skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First-Principles Investigation of Ti 2 CSO and Ti 2 CSSe Janus MXene Structures for Li and Mg Electrodes
Award ID(s):
1940099 1905775
PAR ID:
10288160
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
125
Issue:
23
ISSN:
1932-7447
Page Range / eLocation ID:
12469 to 12477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    MXene/polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. These composites have shown superior properties such as high light-to-heat conversion, excellent electromagnetic interference shielding, and high charge storage, compared to other nanocomposites. They have applications in chemical, materials, electrical, environmental, mechanical, and biomedical engineering as well as medicine. This property-based review on MXene/polymer nanocomposites critically describes findings and achievements in these areas and puts future research directions into perspective. It surveys novel reported applications of MXene-based polymeric nanocomposites. It also covers surface modification approaches that expand the applications of MXenes in nanocomposites. 
    more » « less
  2. Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation. 
    more » « less