Abstract Amorphous chalcogenide alloys are key materials for data storage and energy scavenging applications due to their large non-linearities in optical and electrical properties as well as low vibrational thermal conductivities. Here, we report on a mechanism to suppress the thermal transport in a representative amorphous chalcogenide system, silicon telluride (SiTe), by nearly an order of magnitude via systematically tailoring the cross-linking network among the atoms. As such, we experimentally demonstrate that in fully dense amorphous SiTe the thermal conductivity can be reduced to as low as 0.10 ± 0.01 W m −1 K −1 for high tellurium content with a density nearly twice that of amorphous silicon. Using ab-initio simulations integrated with lattice dynamics, we attribute the ultralow thermal conductivity of SiTe to the suppressed contribution of extended modes of vibration, namely propagons and diffusons. This leads to a large shift in the mobility edge - a factor of five - towards lower frequency and localization of nearly 42% of the modes. This localization is the result of reductions in coordination number and a transition from over-constrained to under-constrained atomic network.
more »
« less
Spectral attributes of sub-amorphous thermal conductivity in cross-linked organic–inorganic hybrids
Organic–inorganic hybrids have found increasing applications for thermal management across various disciplines. Such materials can achieve thermal conductivities below the so-called “amorphous limit” of their constituents’ thermal conductivity. Despite their technological significance, a complete understanding of the origins of this thermal conductivity reduction remains elusive in these materials. In this paper, we develop a prototypical cross-linked organic–inorganic layered system, to investigate the spectral origins of its sub-amorphous thermal conductivity. Initially, we study the atomic structure of the model and find that besides polymer chain length, the relative drift of the layers governs the reduction in computed basal spacing, in agreement with experimental measurements. We, subsequently, find that organic cross-linking results in up to 40% reduction in thermal conductivity compared to inorganic samples. An in-depth investigation of vibrational modes reveals that this reduction is the result of reduced mode diffusivities, which in turn is a consequence of a vibrational mismatch between the organic and inorganic constituents. We also show that the contribution of propagating modes to the total thermal conductivity is not affected by organic cross-linking. Our approach paves the path toward a physics-informed analysis and design of a wide range of multifunctional hybrid nanomaterials for thermal management applications among others.
more »
« less
- PAR ID:
- 10288173
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 12
- Issue:
- 25
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 13491 to 13500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the conductive heat transport through calcium silicate hydrate (C-S-H) and organically cross-linked C-S-H via experiments, micromechanical homogenization theory, and molecular simulations. We find that C-S-H's intrinsic thermal conductivity falls below its amorphous limit when cross-linked with short-chain organosilanes. The observed reduction correlates with the alkyl chain length of the bis-organosilane molecule. To understand the underlying fundamental molecular processes accountable for such a reduction, we construct realistic molecular structures of cross-linked C-S-H and validate them against the spectroscopic and pycnometery measurements. The atomistic simulations indicate that the reduction in the contribution of propagons (propagating heat carriers) and diffusons (diffusive heat carriers) to heat transport, and the amplification of locons (localized vibrational modes), are the main driving factors allowing to limit the heat conduction in C-S-H. Presented findings offer new potential directions to nanoengineering novel admixtures for cement composites and resilient lightweight cementitious mesostructures for thermally efficient building envelopes.more » « less
-
Porous graphene and graphite are increasingly utilized in electrochemical energy storage and solar-thermal applications due to their unique structural and thermal properties. In this study, we conduct a comprehensive analysis of the lattice thermal transport and spectral phonon characteristics of holey graphite and multilayer graphene. Our results reveal that phonon modes propagating obliquely with respect to the graphene basal planes are the primary contributors to cross-plane thermal transport. These modes exhibit a predominantly ballistic nature, resulting in an almost linear increase in cross-plane thermal conductivity with the number of layers. The presence of nanoholes in graphene induces a broadband suppression of cross-plane phonon transport, whereas lithium-ion intercalation shows potential to enhance it. These findings provide critical insights into the mechanisms governing cross-plane heat conduction in key graphene-based structures, offering valuable guidance for thermal management and engineering of van der Waals materials.more » « less
-
Two-dimensional hybrid metal-halide perovskites (2D-MHPs) have emerged as important solution-processed semiconductors with favorable optical and electronic properties for diverse applications in photovoltaics, optoelectronics, and spintronics. The quasi-2D layered structures, featuring large acoustic impedance mismatches between the organic and inorganic sublattices, are expected to result in distinct and anisotropic thermal transport properties along the cross-plane and in-plane directions. Here, we introduce transducer-free vibrational-pump-visible-probe (VPVP) approaches that enable accurate quantification of anisotropic thermal transport properties in various archetypical single-crystalline 2D-MHPs. Specifically, using VPVP spectroscopy and VPVP microscopy, we measure the anisotropic thermal diffusivities of 2D-MHPs with systematically varied Pb-I octahedral layer thicknesses, as well as organic spacer types and lengths, revealing how these structural parameters alter the cross-plane and in-plane thermal transport properties in distinct ways. While diffuse interface scattering plays an important role in dictating cross-plane thermal transport, in-plane thermal transport is primarily determined by phonon transport within interconnected inorganic layers. Density functional theory incorporating four-phonon scatterings provides further insight into the low thermal conductivity and modest thermal conduction anisotropy in 2D-MHPs. Our work demonstrates a new all-optical and noncontact method, which requires minimal sample preparation and allows direct visualization of cross-plane and in-plane thermal transport, potentially compatible with sample environments. The demonstrated VPVP approaches can advance understanding of thermal transport in 2D-MHPs as well as wide-ranging hybrid and polymeric semiconductors beyond 2D-MHPs.more » « less
-
Abstract Tailor‐made materials featuring large tunability in their thermal transport properties are highly sought‐after for diverse applications. However, achieving `user‐defined’ thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure‐property relationships, which has proven to be challenging. Herein, large‐scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure‐property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data‐driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m−1K−1) to exceptionally high (≈50 W m−1K−1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon–carbon linkages with densities greater than 500 kg m−3, nominal void fractions (in the range of ≈0.6–0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities.more » « less
An official website of the United States government

