skip to main content


Title: Spectral attributes of sub-amorphous thermal conductivity in cross-linked organic–inorganic hybrids
Organic–inorganic hybrids have found increasing applications for thermal management across various disciplines. Such materials can achieve thermal conductivities below the so-called “amorphous limit” of their constituents’ thermal conductivity. Despite their technological significance, a complete understanding of the origins of this thermal conductivity reduction remains elusive in these materials. In this paper, we develop a prototypical cross-linked organic–inorganic layered system, to investigate the spectral origins of its sub-amorphous thermal conductivity. Initially, we study the atomic structure of the model and find that besides polymer chain length, the relative drift of the layers governs the reduction in computed basal spacing, in agreement with experimental measurements. We, subsequently, find that organic cross-linking results in up to 40% reduction in thermal conductivity compared to inorganic samples. An in-depth investigation of vibrational modes reveals that this reduction is the result of reduced mode diffusivities, which in turn is a consequence of a vibrational mismatch between the organic and inorganic constituents. We also show that the contribution of propagating modes to the total thermal conductivity is not affected by organic cross-linking. Our approach paves the path toward a physics-informed analysis and design of a wide range of multifunctional hybrid nanomaterials for thermal management applications among others.  more » « less
Award ID(s):
1825921 1826122
NSF-PAR ID:
10288173
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
25
ISSN:
2040-3364
Page Range / eLocation ID:
13491 to 13500
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Amorphous chalcogenide alloys are key materials for data storage and energy scavenging applications due to their large non-linearities in optical and electrical properties as well as low vibrational thermal conductivities. Here, we report on a mechanism to suppress the thermal transport in a representative amorphous chalcogenide system, silicon telluride (SiTe), by nearly an order of magnitude via systematically tailoring the cross-linking network among the atoms. As such, we experimentally demonstrate that in fully dense amorphous SiTe the thermal conductivity can be reduced to as low as 0.10 ± 0.01 W m −1 K −1 for high tellurium content with a density nearly twice that of amorphous silicon. Using ab-initio simulations integrated with lattice dynamics, we attribute the ultralow thermal conductivity of SiTe to the suppressed contribution of extended modes of vibration, namely propagons and diffusons. This leads to a large shift in the mobility edge - a factor of five - towards lower frequency and localization of nearly 42% of the modes. This localization is the result of reductions in coordination number and a transition from over-constrained to under-constrained atomic network. 
    more » « less
  2. We study the conductive heat transport through calcium silicate hydrate (C-S-H) and organically cross-linked C-S-H via experiments, micromechanical homogenization theory, and molecular simulations. We find that C-S-H's intrinsic thermal conductivity falls below its amorphous limit when cross-linked with short-chain organosilanes. The observed reduction correlates with the alkyl chain length of the bis-organosilane molecule. To understand the underlying fundamental molecular processes accountable for such a reduction, we construct realistic molecular structures of cross-linked C-S-H and validate them against the spectroscopic and pycnometery measurements. The atomistic simulations indicate that the reduction in the contribution of propagons (propagating heat carriers) and diffusons (diffusive heat carriers) to heat transport, and the amplification of locons (localized vibrational modes), are the main driving factors allowing to limit the heat conduction in C-S-H. Presented findings offer new potential directions to nanoengineering novel admixtures for cement composites and resilient lightweight cementitious mesostructures for thermally efficient building envelopes. 
    more » « less
  3. Abstract

    Polymers are a unique class of materials from the perspective of normal mode analysis. Polymers consist of individual chains with repeating units and strong intra-chain covalent bonds, and amorphous arrangements among chains with weak inter-chain van der Waals and for some polymers also electrostatic interactions. Intuitively, this strong heterogeneity in bond strength can give rise to special features in the constituent phonons, but such effects have not been studied deeply before. Here, we use lattice dynamics and molecular dynamics to perform modal analysis of the thermal conductivity in amorphous polymers. We find an abnormally large population of localized modes in amorphous polymers, which is fundamentally different from amorphous inorganic materials. Contrary to the common picture of thermal transport, localized modes in amorphous polymers are found to be the dominant contributors to thermal conductivity. We find that a significant portion of the localization happens within individual chains, but heat is dominantly conducted when localized modes involve two chains. These results suggest localized modes generally play a key role in thermal transport for different polymers. The results provide an alternative perspective on why polymer thermal conductivity is generally quite low and gives insight into how to potentially change it.

     
    more » « less
  4. Abstract

    Vibrational energy transport in disordered media is of fundamental importance to several fields spanning from sustainable energy to biomedicine to thermal management. This work investigates hybrid ordered/disordered nanocomposites that consist of crystalline membranes decorated by regularly patterned disordered regions formed by ion beam irradiation. The presence of the disordered regions results in reduced thermal conductivity, rendering these systems of interest for use as nanostructured thermoelectrics and thermal device components, yet their vibrational properties are not well understood. Here, the mechanism of vibrational transport and the reason underlying the observed reduction is established in detail. The hybrid systems are found to exhibit glass‐crystal duality in vibrational transport. Lattice dynamics reveals substantial hybridization between the localized and delocalized modes, which induces avoided crossings and harmonic broadening in the dispersion. Allen/Feldman theory shows that the hybridization and avoided crossings are the dominant drivers of the reduction. Anharmonic scattering is also enhanced in the patterned nanocomposites, further contributing to the reduction. The systems exhibit features reminiscent of both nanophononic materials and locally resonant nanophononic metamaterials, but operate in a manner distinct to both. These findings indicate that such “patterned disorder” can be a promising strategy to tailor vibrational transport through hybrid nanostructures.

     
    more » « less
  5. Abstract

    Thermal transport in amorphous lithium‐sulfur (a‐LixS) is systematically investigated using molecular dynamics and the contributions from different types of heat carriers are quantitatively evaluated. In general, the thermal conductivity (TC) ofa‐LixS changes largely by varying the concentration (x) of Li ions ina‐LixS. Interestingly, the TC ofa‐LixS shows three distinct regimes of dependence on Li concentration. For low Li concentration (x = 0.4–1.2), the TC grows slowly, followed by a rapid increase in TC for medium Li concentration (x = 1.2–1.6), where the growth rate is three times that of the first regime, and finally, the TC is independent of Li concentration (x = 1.6–2.0). The TC enhancement in the first and second regimes is mainly attributed to propagating and non‐propagating vibrational modes ina‐LixS, respectively. In contrast, the stable thermal transport regime is governed by the competition between propagating and non‐propagating phonons. These investigations provide quantitative TC data of various polysulfides for shuttling analysis, and a fundamental understanding of the thermal transport mechanism of complexa‐LixS structures, which is beneficial for the rational design of thermal management of Li‐S batteries.

     
    more » « less