skip to main content


Title: A Study of Common Concerns Inhibiting Teacher Enactment of Computational Thinking into Project-based Mathematics and Career Technical Education.
Recent studies have shown that US high school students are not as prolific as other countries in terms of their performance in mathematics. One of the most effective solutions can be a change in the way mathematics subjects is taught in high school. The NSF-funded “Understanding How Integrated Computational Thinking, Engineering Design, and Mathematics Can Help Students Solve Scientific and Technical Problems in Career Technical Education (INITIATE) project is a collaboration of The University of Toledo and high schools in Toledo that aims to improve mathematics teaching. Project-based learning (PBL) and integrating math with career technology education (CTE) have been established as efficient ways to improve high school students’ understanding of mathematics. Nevertheless, implementation of new ways of teaching is not always easy for the teachers, and many factors may inhibit the teachers from implementing PBL methods. This research analyzes common concerns teachers experienced regarding enacting new teaching methodologies in their classroom. The Stages of Concern Questionnaire (SoCQ) was used to measure the teachers’ perceptions of and comfort with implementing computational thinking (CT) concepts PBL lessons. Possible relationships between teachers’ SoCQ CBAM score and other variables such as their understanding of PBL and CTE are examined and discussed.  more » « less
Award ID(s):
1741784
NSF-PAR ID:
10288334
Author(s) / Creator(s):
Date Published:
Journal Name:
CSEDU
ISSN:
2184-5026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D printing (3DP) has been becoming more and more popular throughout the education system from Kindergarten to University. High school is a critical period for students to decide their imminent university major selection which in turn will impact their future career choices. High school students are usually intrigued by hands-on tool such as 3DP which is also an important contributor to other courses such as robotics. The recent years have seen more investment and availability of 3DP in high schools, especially Career and Technical Education (CTE) programs. However, mere availability of 3DP is not enough for teachers to fully utilize its potential in their classrooms. While basic 3DP skills can be obtained through a few hours of training, the basic training is insufficient to ensure effective teaching Engineering Design Process (EDP) at the high school level. To address this problem, this project develops an EDP course tightly integrated with 3DP for preservice teachers (PST) who are going to enter the workforce in high schools. Engineering design process (EDP) has become an essential part for preservice teachers (PST), especially for high school STEM. 3DP brought transformative change to EDP which is an iterative process that needs virtual/physical prototyping. The new PST course on EDP will be purposefully integrated with an in-depth discussion of 3DP. The approach is to dissect a 3D printer’s hardware, explain each component’s function, introduce each component’s manufacturing methods, describe possible defects, and elucidate what works and what does not. This has at least four benefits: 1) PSTs will know what is possibly wrong when a printer or printing process fails, 2) PSTs will learn more manufacturing processes besides 3DP that can be used to support engineering design prototyping, 3) PSTs will know how to design something that can meet the manufacturing constraints, i.e., can be actually fabricated, and 4) reduce errors and frustrations caused by failed design and failed prints which happen frequently to novices in 3DP. After graduation, PSTs will bring the knowledge to their future high schools and will be more confident in teaching engineering design, reverse engineering, prototype development, manufacturing, and technology. The developed course will be implemented and assessed in a future semester. 
    more » « less
  2. Wyoming recently mandated that computer science instruction be provided in K-12 schools by 2022, and there is an urgent need for designing instruction that can integrate computer science into the teaching of other subjects. This project assembles a network improvement community comprised of partners from the University of Wyoming, community colleges, Wyoming school districts, the Wyoming Library System, the Wyoming Department of Education, and local software development firms. The community meets once monthly over the duration of the project to collaborate stakeholder agendas for meeting the project goals. The community enlists K-8 teachers from across the state to experience professional development and collaborate on integrating computer science into their instruction of STEM and social science topics. The project is producing units for teachers, who are implementing these units with support from master teachers and educational scholars. The community serves as a forum for teachers to debrief and learn from each other about ways to improve their instruction and design of the curricular units. Libraries in the state system act as partners for dissemination to rural areas of the innovative instructional approaches. WySLICE prepares 150 K-8 teachers and state librarians from all disciplines to integrate computer science into their teaching. The project is reaching almost half of all K-8 students in Wyoming. The research questions address how teachers use modeling practices as supports for student understanding of algorithms and coding in a variety of ways. The curricula involve cybersecurity as well as other topics relevant to measurement in mathematics and social studies topics that involve social concerns like voting. Data sources include teacher lesson plans and recordings of their instructional implementation, scoring of each of these according to a rubric, meeting notes of monthly meetings, and results from pre-post student assessments. The evaluation focuses on the meeting of project goals and the quality of the management of the network improvement community. This project is jointly funded by CS for All and the Established Program to Stimulate Competitive Research (EPSCoR). This work is supported by the National Science Foundation under DRL Grant #1923542 "CS For All:RPP - Booting Up Computer Science in Wyoming." 
    more » « less
  3. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  4. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  5. This NSF Advanced Technological Education (ATE) research and development project aims to design and test a Backtracking Technique for understanding the pathways students take through college and into careers in science, technology, engineering, and mathematics (STEM) and career and technical education (CTE), with the focus of this project on information technology (IT). The project gathers data about current and former students who started in the same cohort, includes institutional research data (e.g., grades, demographics, course-taking) and merges these data with employment data from surveys and lived experiences obtained from interviews. These data are analyzed to identify potential pathways and critical junctions that may lead to student success or other outcomes. The research team is led by a doctoral granting institution and a community college, and includes four additional community colleges that collectively serve rural and urban student populations. In this paper we share the potential of the Backtracking Technique to generate contextualized career pathway data for institutions and create visualizations that can aid in institutional decision-making through a study pilot. The pilot is an initial effort to test the project’s aims of integrating institutional data with phenomenological data to model student progression through post-secondary STEM programs. The analysis will identify and verify influencers that support or hinder student success. Quantitative data analyses will consist of descriptive and comparative methods, which will be verified and informed by open coding and thematic analysis of the qualitative data. We share how the systematic investigation of institutional and phenomenological data used in the Backtracking Technique has the potential to: (1) generate practical knowledge about academic/career pathways in information technology for use by stakeholders; (2) identify and examine relationships among these pathways, students experiences, and psychosocial factors; and (3) add to the analytical methods available to institutional research professionals to document, investigate, and visualize student pathway information using data dashboards. This ATE project has great potential to transform the technician preparation for the advanced technology fields that drive the nation's economy. 
    more » « less