skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial
Background: Soft robotic exosuits can facilitate immediate increases in short- and long-distance walking speeds in people with post-stroke hemiparesis. We sought to assess the feasibility and rehabilitative potential of applying propulsion-augmenting exosuits as part of an individualized and progressive training program to retrain faster walking and the underlying propulsive strategy. Methods: A 54-yr old male with chronic hemiparesis completed five daily sessions of Robotic Exosuit Augmented Locomotion (REAL) gait training. REAL training consists of high-intensity, task-specific, and progressively challenging walking practice augmented by a soft robotic exosuit and is designed to facilitate faster walking by way of increased paretic propulsion. Repeated baseline assessments of comfortable walking speed over a 2-year period provided a stable baseline from which the effects of REAL training could be elucidated. Additional outcomes included paretic propulsion, maximum walking speed, and 6-minute walk test distance. Results: Comfortable walking speed was stable at 0.96 m/s prior to training and increased by 0.30 m/s after training. Clinically meaningful increases in maximum walking speed (Δ: 0.30 m/s) and 6-minute walk test distance (Δ: 59 m) were similarly observed. Improvements in paretic peak propulsion (Δ: 2.80 %BW), propulsive power (Δ: 0.41 W/kg), and trailing limb angle (Δ: 6.2 degrees) were observed at comfortable walking speed ( p 's < 0.05). Likewise, improvements in paretic peak propulsion (Δ: 4.63 %BW) and trailing limb angle (Δ: 4.30 degrees) were observed at maximum walking speed ( p 's < 0.05). Conclusions: The REAL training program is feasible to implement after stroke and capable of facilitating rapid and meaningful improvements in paretic propulsion, walking speed, and walking distance.  more » « less
Award ID(s):
1633516
PAR ID:
10288351
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Neurorobotics
Volume:
15
ISSN:
1662-5218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundSoft robotic exosuits can provide partial dorsiflexor and plantarflexor support in parallel with paretic muscles to improve poststroke walking capacity. Previous results indicate that baseline walking ability may impact a user’s ability to leverage the exosuit assistance, while the effects on continuous walking, walking stability, and muscle slacking have not been evaluated. Here we evaluated the effects of a portable ankle exosuit during continuous comfortable overground walking in 19 individuals with chronic hemiparesis. We also compared two speed-based subgroups (threshold: 0.93 m/s) to address poststroke heterogeneity. MethodsWe refined a previously developed portable lightweight soft exosuit to support continuous overground walking. We compared five minutes of continuous walking in a laboratory with the exosuit to walking without the exosuit in terms of ground clearance, foot landing and propulsion, as well as the energy cost of transport, walking stability and plantarflexor muscle slacking. ResultsExosuit assistance was associated with improvements in the targeted gait impairments: 22% increase in ground clearance during swing, 5° increase in foot-to-floor angle at initial contact, and 22% increase in the center-of-mass propulsion during push-off. The improvements in propulsion and foot landing contributed to a 6.7% (0.04 m/s) increase in walking speed (R2 = 0.82). This enhancement in gait function was achieved without deterioration in muscle effort, stability or cost of transport. Subgroup analyses revealed that all individuals profited from ground clearance support, but slower individuals leveraged plantarflexor assistance to improve propulsion by 35% to walk 13% faster, while faster individuals did not change either. ConclusionsThe immediate restorative benefits of the exosuit presented here underline its promise for rehabilitative gait training in poststroke individuals. 
    more » « less
  2. Abstract IntroductionHigh-intensity gait training is widely recognized as an effective rehabilitation approach after stroke. Soft robotic exosuits that enhance post-stroke gait mechanics have the potential to improve the rehabilitative outcomes achieved by high-intensity gait training. The objective of thisdevelopment-of-conceptpilot crossover study was to evaluate the outcomes achieved by high-intensity gait training with versus without soft robotic exosuits. MethodsIn this 2-arm pilot crossover study, four individuals post-stroke completed twelve visits of speed-based, high-intensity gait training: six consecutive visits of Robotic Exosuit Augmented Locomotion (REAL) gait training and six consecutive visits without the exosuit (CONTROL). The intervention arms were counterbalanced across study participants and separated by 6 + weeks of washout. Walking function was evaluated before and after each intervention using 6-minute walk test (6MWT) distance and 10-m walk test (10mWT) speed. Moreover, 10mWT speeds were evaluated before each training visit, with the time-course of change in walking speed computed for each intervention arm. For each participant, changes in each outcome were compared to minimal clinically-important difference (MCID) thresholds. Secondary analyses focused on changes in propulsion mechanics and associated biomechanical metrics. ResultsLarge between-group effects were observed for 6MWT distance (d = 1.41) and 10mWT speed (d = 1.14). REAL gait training resulted in an average pre-post change of 68 ± 27 m (p = 0.015) in 6MWT distance, compared to a pre-post change of 30 ± 16 m (p = 0.035) after CONTROL gait training. Similarly, REAL training resulted in a pre-post change of 0.08 ± 0.03 m/s (p = 0.012) in 10mWT speed, compared to a pre-post change of 0.01 ± 06 m/s (p = 0.76) after CONTROL. For both outcomes, 3 of 4 (75%) study participants surpassed MCIDs after REAL training, whereas 1 of 4 (25%) surpassed MCIDs after CONTROL training. Across the training visits, REAL training resulted in a 1.67 faster rate of improvement in walking speed. Similar patterns of improvement were observed for the secondary gait biomechanical outcomes, with REAL training resulting in significantly improved paretic propulsion for 3 of 4 study participants (p < 0.05) compared to 1 of 4 after CONTROL. ConclusionSoft robotic exosuits have the potential to enhance the rehabilitative outcomes produced by high-intensity gait training after stroke. Findings of thisdevelopment-of-conceptpilot crossover trial motivate continued development and study of the REAL gait training program. 
    more » « less
  3. Many stroke survivors suffer from hemiparesis, a condition that results in impaired walking ability. Walking ability is commonly assessed by walking speed, which is dependent on propulsive force generation both in healthy and stroke populations. Propulsive force generation is determined by two factors: ankle moment and the posture of the trailing limb during push-off. Recent work has used robotic assistance strategies to modulate propulsive force with some success. However, robotic strategies are limited by their high cost and the technical difficulty of fitting and operating robotic devices in a clinical setting. Here we present a new paradigm for goal-oriented gait training that utilizes a split belt treadmill to train both components of propulsive force generation, achieved by accelerating the treadmill belt of the trailing limb during push off. Belt accelerations require subjects to produce greater propulsive force to maintain their position on the treadmill and increase trailing limb angle through increased velocity of the accelerated limb. We hypothesized that locomotor adaptation to belt accelerations would result in measurable after effects in the form of increased propulsive force generation. We tested our protocol on healthy subjects at two acceleration magnitudes. Our results show that 79% of subjects significantly increased propulsive force generation following training, and that larger accelerations translated to larger, more persistent behavioral gains. 
    more » « less
  4. null (Ed.)
    Abstract Hemiparetic walking after stroke is typically slow, asymmetric, and inefficient, significantly impacting activities of daily living. Extensive research shows that functional, intensive, and task-specific gait training is instrumental for effective gait rehabilitation, characteristics that our group aims to encourage with soft robotic exosuits. However, standard clinical assessments may lack the precision and frequency to detect subtle changes in intervention efficacy during both conventional and exosuit-assisted gait training, potentially impeding targeted therapy regimes. In this paper, we use exosuit-integrated inertial sensors to reconstruct three clinically meaningful gait metrics related to circumduction, foot clearance, and stride length. Our method corrects sensor drift using instantaneous information from both sides of the body. This approach makes our method robust to irregular walking conditions poststroke as well as usable in real-time applications, such as real-time movement monitoring, exosuit assistance control, and biofeedback. We validate our algorithm in eight people poststroke in comparison to lab-based optical motion capture. Mean errors were below 0.2 cm (9.9%) for circumduction, −0.6 cm (−3.5%) for foot clearance, and 3.8 cm (3.6%) for stride length. A single-participant case study shows our technique’s promise in daily-living environments by detecting exosuit-induced changes in gait while walking in a busy outdoor plaza. 
    more » « less
  5. null (Ed.)
    Background The rhythm of music can entrain neurons in motor cortex by way of direct connections between auditory and motor brain regions. Objective We sought to automate an individualized and progressive music-based, walking rehabilitation program using real-time sensor data in combination with decision algorithms. Methods A music-based digital therapeutic was developed to maintain high sound quality while modulating, in real-time, the tempo (ie, beats per minute, or bpm) of music based on a user’s ability to entrain to the tempo and progress to faster walking cadences in-sync with the progression of the tempo. Eleven individuals with chronic hemiparesis completed one automated 30-minute training visit. Seven returned for 2 additional visits. Safety, feasibility, and rehabilitative potential (ie, changes in walking speed relative to clinically meaningful change scores) were evaluated. Results A single, fully automated training visit resulted in increased usual (∆ 0.085 ± 0.027 m/s, P = .011) and fast (∆ 0.093 ± 0.032 m/s, P = .016) walking speeds. The 7 participants who completed additional training visits increased their usual walking speed by 0.12 ± 0.03 m/s after only 3 days of training. Changes in walking speed were highly related to changes in walking cadence ( R 2 > 0.70). No trips or falls were noted during training, all users reported that the device helped them walk faster, and 70% indicated that they would use it most or all of the time at home. Conclusions In this proof-of-concept study, we show that a sensor-automated, progressive, and individualized rhythmic locomotor training program can be implemented safely and effectively to train walking speed after stroke. Music-based digital therapeutics have the potential to facilitate salient, community-based rehabilitation. 
    more » « less