Abstract Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web‐based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post‐test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in‐unit and post‐unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.
more »
« less
Biology Undergraduate Students’ Graphing Practice in Digital Versus Pen and Paper Graphing Environments
Abstract Graphing is an important practice for scientists and in K-16 science curricula. Graphs can be constructed using an array of software packages as well as by hand, with pen-and-paper. However, we have an incomplete understanding of how students’ graphing practice vary by graphing environment; differences could affect how best to teach and assess graphing. Here we explore the role of two graphing environments in students’ graphing practice. We studied 43 undergraduate biology students’ graphing practice using either pen-and-paper (PP) ( n = 21 students) or a digital graphing tool GraphSmarts (GS) ( n = 22 students). Participants’ graphs and verbal justifications were analyzed to identify features such as the variables plotted, number of graphs created, raw data versus summarized data plotted, and graph types (e.g., scatter plot, line graph, or bar graph) as well as participants’ reasoning for their graphing choices. Several aspects of participant graphs were similar regardless of graphing environment, including plotting raw vs. summarized data, graph type, and overall graph quality, while GS participants were more likely to plot the most relevant variables. In GS, participants could easily make more graphs than in PP and this may have helped some participants show latent features of their graphing practice. Those students using PP tended to focus more on ease of constructing the graph than GS. This study illuminates how the different characteristics of the graphing environment have implications for instruction and interpretation of assessments of student graphing practices.
more »
« less
- Award ID(s):
- 1726180
- PAR ID:
- 10288762
- Date Published:
- Journal Name:
- Journal of Science Education and Technology
- Volume:
- 30
- Issue:
- 3
- ISSN:
- 1059-0145
- Page Range / eLocation ID:
- 431 to 446
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data visualizations are powerful tools for communicating quantitative information. While prior work has focused on how experts design informative graphs, little is known about the intuitions non-experts have about what makes a graph effective for communicating a specific message. In the current study, we asked participants (N=398) which of eight graphs would be most useful for answering a particular question, where all graphs were generated from the same dataset but varied in how the data were arranged. We tested the degree to which participants based their decisions on sensitivity to how easily other participants (N=542) would be able to answer that question with that graph. Our results suggest that while people were biased towards graphs that were at least minimally informative (i.e., contained the relevant variables), their decisions did not necessarily reflect sensitivity to more graded but systematic variation in actual graph comprehensibility.more » « less
-
Abstract Biologists represent data in visual forms, such as graphs, to aid data analysis and communication. However, students struggle to construct effective graphs. Although some studies explore these difficulties, we lack a comprehensive framework of the knowledge and skills needed to construct graphs in biology. In the present article, we describe the development of the Graph Construction Competency Model for Biology (GCCM-Bio), a framework of the components and activities associated with graph construction. We identified four broad knowledge areas for graph construction in biology: data selection, data exploration, graph assembly, and graph reflection. Under each area, we identified activities undertaken when constructing graphs of biological data and refined the GCCM-Bio through focus groups with experts in biology and statistics education. We also ran a scoping literature review to verify that these activities were represented in the graphing literature. The GCCM-Bio could support instructors, curriculum developers, and researchers when designing instruction and assessment of biology graph construction.more » « less
-
Evans, T; Marmur, O; Hunter, J; Leach, G; Jhagroo, J (Ed.)This case study of one first grade student involves the analysis of three interviews that took place before, during, and after classroom teaching experiments (CTEs). The CTEs were designed to engage children in representing algebraic concepts using graphs. Using a knowledge-in-pieces perspective, our analysis focused on identifying students’ natural intuitions and ways of thinking algebraically about a functional relationship represented using graphs. Findings reveal four seeds, two of which were identified in prior studies, and how the activation and coordination of these seeds results in students' production of function graphs.more » « less
-
After participating in an afterschool program where they used the Common Online Data Analysis Platform (CODAP) to study time-series data about infectious diseases, four middle school students were interviewed to determine how they understood features of and trends within these graphs. Our focus was on how students compared graphs. Students were readily able to compare cumulative/total infection rates among two countries with differently sized populations. It was more challenging for them to link a graph of yearly cases to the corresponding graph of cumulative cases. Students offered reasonable interpretations for spikes or steady periods in the graphs. Time-series graphs are accessible for 11- to 14-year-old students, who were able to make comparisons within and between graphs. Students used proportional reasoning for one comparison task, and on the other task, while it was challenging, they were beginning to understand how yearly and cumulative graphs were related. Time-series graphs are ubiquitous and socially relevant: Students should study time-series data more regularly in school, and more research is needed on the progression of sense-making with these graphs.more » « less
An official website of the United States government

