skip to main content


Title: The Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies
ABSTRACT We construct cosmic microwave background lensing mass maps using data from the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety of optical surveys. The maps are signal dominated on large scales and have fidelity such that their correlation with the cosmic infrared background is clearly visible by eye. We also create lensing maps with thermal Sunyaev−Zel’dovich contamination removed using a novel cleaning procedure that only slightly degrades the lensing signal-to-noise ratio. The cross-spectrum between the cleaned lensing map and the BOSS CMASS galaxy sample is detected at 10σ significance, with an amplitude of A = 1.02 ± 0.10 relative to the Planck best-fitting Lambda cold dark matter cosmological model with fiducial linear galaxy bias. Our measurement lays the foundation for lensing cross-correlation science with current ACT data and beyond.  more » « less
Award ID(s):
1907657 1814971
NSF-PAR ID:
10289051
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
500
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2250 to 2263
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 ≲z≲ 1.1 and 0.3 ≲z≲ 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analyzing our measurements with a more flexible theoretical model. We determine the amplitude of matter fluctuations at low redshifts (z≃ 0.2–1.6), findingS8σ8(Ωm/0.3)0.5=0.813±0.021using the ACT cross-correlation alone andS8= 0.810 ± 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of baryon acoustic oscillation data breaks the degeneracy betweenσ8and Ωm, allowing us to measureσ8= 0.813 ± 0.020 from the cross-correlation of unWISE with ACT andσ8= 0.813 ± 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in ΛCDM cosmology; the consistency ofσ8derived from our two redshift samples atz∼ 0.6 and 1.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by ΛCDM even down to low redshiftsz≲ 1.

     
    more » « less
  2. Abstract The kinetic Sunyaev-Zel'dovich (kSZ) effect, i.e., the Doppler boost of cosmic microwave background (CMB) photons caused by their scattering off free electrons in galaxy clusters and groups with non-zero bulk velocity, is a powerful window on baryons in the universe. We present the first halo-model computation of the cross-power spectrum of the “projected-field” kSZ signal with large-scale structure (LSS) tracers. We compare and validate our calculations against previous studies, which relied on N -body-calibrated effective formulas rather than the halo model. We forecast results for CMB maps from the Atacama Cosmology Telescope (AdvACT), Simons Observatory (SO), and CMB-S4, and LSS survey data from the Dark Energy Survey, the Vera C. Rubin Observatory (VRO), and Euclid . In cross-correlation with galaxy number density, for AdvACT × unWISE we forecast an 18 σ projected-field kSZ detection using data already in hand. Combining SO CMB maps and unWISE galaxy catalogs, we expect a 62 σ detection, yielding precise measurements of the gas density profile radial slopes. Additionally, we forecast first detections of the kSZ — galaxy weak lensing cross-correlation with AdvACT × VRO/ Euclid (at 6 σ ) and of the kSZ — CMB weak lensing cross-correlation with SO (at 16 σ ). Finally, ≈ 10-20% precision measurements of the shape of the gas density profile should be possible with CMB-S4 kSZ — CMB lensing cross-correlation without using any external datasets. 
    more » « less
  3. ABSTRACT

    Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.

     
    more » « less
  4. We measured the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We used two samples of source galaxies, selected with photometric redshifts, (0.1 <  z B  < 1.2) and (1.2 <  z B  < 2), which produce a combined detection significance of the CMB lensing and weak galaxy lensing cross-spectrum of 7.7 σ . With the lower redshift galaxy sample, for which the cross-correlation was detected at a significance of 5.3 σ , we present joint cosmological constraints on the matter density parameter, Ω m , and the matter fluctuation amplitude parameter, σ 8 , marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration as well as the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat ΛCDM cosmological models from both Planck and KiDS-1000. We demonstrate the capacity of CMB weak lensing cross-correlations to set constraints on either the redshift or shear calibration by analysing a previously unused high-redshift KiDS galaxy sample (1.2 <  z B  < 2), with the cross-correlation detected at a significance of 7 σ . This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys. 
    more » « less
  5. We present a measurement of the cross-correlation between theMagLimgalaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 sq. deg of the sky. Our galaxy sample, which covers ∼ 4143 sq. deg, is divided into six redshift bins spanning the redshift range of 0.20 < z < 1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat ΛCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S_8 ≡ σ_8(Ω_m/0.3)^0.5 = 0.75+0.04-0.05. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (< 2σ) of statistical significance. 
    more » « less