skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using the Long Wavelength Array to Search for Cosmic Dawn
The search for the spectral signature of hydrogen from the formation of the first stars, known as Cosmic Dawn or First Light, is an ongoing effort around the world. The signature should present itself as a decrease in the temperature of the 21[Formula: see text]cm transition relative to that of the Cosmic Microwave Background and is believed to reside somewhere below 100[Formula: see text]MHz. A potential detection was published by the Experiment to Detect the Global EoR Signal (EDGES) collaboration with a profile centered around 78[Formula: see text]MHz of both unexpected depth and width (Bowman et al. [2018] Nature 555, 67). If validated, this detection will have profound impacts on the current paradigm of structure formation within [Formula: see text]CDM cosmology. We present an attempt to detect the spectral signature reported by the EDGES collaboration with the Long Wavelength Array station located on the Sevilleta National Wildlife Refuge in New Mexico, USA (LWA-SV). LWA-SV differs from other instruments in that it is a 256 element antenna array and offers beamforming capabilisties that should help with calibration and detection. We report first limits from LWA-SV and look toward future plans to improve these limits.  more » « less
Award ID(s):
1835400
PAR ID:
10289078
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Astronomical Instrumentation
Volume:
09
Issue:
02
ISSN:
2251-1717
Page Range / eLocation ID:
2050008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present recent improvements to the search for the global Cosmic Dawn signature using the Long Wavelength Array station located on the Sevilleta National Wildlife Refuge in New Mexico, USA (LWA–SV). These improvements are both in the methodology of the experiment and the hardware of the station. An improved observing strategy along with more sophisticated temperature calibration and foreground modeling schemes have led to improved residual RMS limits. A large improvement over previous work using LWA–SV is the use of a novel achromatic beamforming technique which has been developed for LWA–SV. We present results from an observing campaign which contains 29 days of observations between March 10, 2021 and April 10, 2021. The reported residual RMS limits are six times above the amplitude of the potential signal reported by the Experiment to Detect the Global EoR Signature (EDGES) collaboration. 
    more » « less
  2. ABSTRACT Next-generation aperture arrays are expected to consist of hundreds to thousands of antenna elements with substantial digital signal processing to handle large operating bandwidths of a few tens to hundreds of MHz. Conventionally, FX correlators are used as the primary signal processing unit of the interferometer. These correlators have computational costs that scale as $$\mathcal {O}(N^2)$$ for large arrays. An alternative imaging approach is implemented in the E-field Parallel Imaging Correlator (EPIC) that was recently deployed on the Long Wavelength Array station at the Sevilleta National Wildlife Refuge (LWA-SV) in New Mexico. EPIC uses a novel architecture that produces electric field or intensity images of the sky at the angular resolution of the array with full or partial polarization and the full spectral resolution of the channelizer. By eliminating the intermediate cross-correlation data products, the computational costs can be significantly lowered in comparison to a conventional FX or XF correlator from $$\mathcal {O}(N^2)$$ to $$\mathcal {O}(N \log N)$$ for dense (but otherwise arbitrary) array layouts. EPIC can also lower the output data rates by directly yielding polarimetric image products for science analysis. We have optimized EPIC and have now commissioned it at LWA-SV as a commensal all-sky imaging back-end that can potentially detect and localize sources of impulsive radio emission on millisecond timescales. In this article, we review the architecture of EPIC, describe code optimizations that improve performance, and present initial validations from commissioning observations. Comparisons between EPIC measurements and simultaneous beam-formed observations of bright sources show spectral-temporal structures in good agreement. 
    more » « less
  3. null (Ed.)
    We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing. 
    more » « less
  4. When Earth-skimming tau neutrinos interact within the Earth, they generate upgoing tau leptons that can decay in the atmosphere, forming extensive air showers. The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a novel detector concept that utilizes a radio interferometer atop a mountain to search for the radio emission due to these extensive air showers. The prototype, located at the White Mountain Research Station in California, consists of 4 crossed-dipole antennas operating in the 30-80 MHz range and uses a directional interferometric trigger for reduced thresholds and background rejection. The prototype will first be used to detect down-going cosmic rays to validate the detector model. A Monte-Carlo simulation was developed to predict the acceptance of the prototype to cosmic rays, as well as the expected rate of detection. In this simulation, cosmic ray induced air showers with random properties are generated in an area around the prototype array. It is then determined if a given shower triggers the array using radio emission simulations from ZHAireS and antenna modelling from XFdtd. Here, we present the methodology and results of this simulation. 
    more » « less
  5. Abstract We present observations of 86 meteor radio afterglows (MRAs) using the new broadband imager at the Long Wavelength Array Sevilleta (LWA‐SV) station. The MRAs were detected using the all‐sky images with a bandwidth up to 20 MHz. We fit the spectra with both a power law and a log‐normal function. When fit with a power law, the spectra varied from flat to steep and the derived spectral index distribution from the fit peaked at −1.73. When fit with a log‐normal function, the spectra exhibits turnovers at frequencies between 30 and 40 MHz, and appear to be a better functional fit to the spectra. We compared the spectral parameters from the two fitting methods with the physical properties of MRAs. We observe a weak correlation between the log‐normal turnover frequency and the altitude of MRAs. The spectral indices from the power law fit do not show any strong correlations with the physical properties of MRAs. However, the full width half maximum (FWHM) duration of MRAs is correlated with the local time, incidence angle, luminosity and optically derived kinetic energy of parent meteoroid. Also, the average luminosity of MRAs seems to be correlated with the kinetic energy of parent meteoroid and the altitude at which they occur. 
    more » « less