skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of the potential efficacy and timing of COVID-19 vaccine on morbidity and mortality
Background: COVID-19 vaccines have been approved and made available. While questions of vaccine allocation strategies have received significant attention, important questions remain regarding the potential impact of the vaccine given uncertainties regarding efficacy against transmission, availability, timing, and durability. Methods: We adapted a susceptible-exposed-infectious-recovered (SEIR) model to examine the potential impact on hospitalization and mortality assuming increasing rates of vaccine efficacy, coverage, and administration. We also evaluated the uncertainty of the vaccine to prevent infectiousness as well as the impact on outcomes based on the timing of distribution and the potential effects of waning immunity. Findings: Increased vaccine efficacy against disease reduces hospitalizations and deaths from COVID-19; however, the relative benefit of transmission blocking varied depending on the timing of vaccine distribution. Early in an outbreak, a vaccine that reduces transmission will be relatively more effective than one introduced later in the outbreak. In addition, earlier and accelerated implementation of a less effective vaccine is more impactful than later implementation of a more effective vaccine. These findings are magnified when considering the durability of the vaccine. Vaccination in the spring will be less impactful when immunity is less durable. Interpretation: Policy choices regarding non-pharmaceutical interventions, such as social distancing and face mask use, will need to remain in place longer if the vaccine is less effective at reducing transmission or distributed slower. In addition, the stage of the local outbreak greatly impacts the overall effectiveness of the vaccine in a region and should be considered when allocating vaccines.  more » « less
Award ID(s):
2027908
PAR ID:
10289576
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
EClinicalMedicine
Volume:
35
ISSN:
2589-5370
Page Range / eLocation ID:
100863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lal, Rajnesh (Ed.)
    In late 2019, the emergence of COVID-19 in Wuhan, China, led to the implementation of stringent measures forming the zero-COVID policy aimed at eliminating transmission. Zero-COVID policy basically aimed at completely eliminating the transmission of COVID-19. However, the relaxation of this policy in late 2022 reportedly resulted in a rapid surge of COVID-19 cases. The aim of this work is to investigate the factors contributing to this outbreak using a new SEIR-type epidemic model with time-dependent level of immunity. Our model incorporates a time-dependent level of immunity considering vaccine doses administered and time-post-vaccination dependent vaccine efficacy. We find that vaccine efficacy plays a significant role in determining the outbreak size and maximum number of daily infected. Additionally, our model considers under-reporting in daily cases and deaths, revealing their combined effects on the outbreak magnitude. We also introduce a novel Physics Informed Neural Networks (PINNs) approach which is extremely useful in estimating critical parameters and helps in evaluating the predictive capability of our model. 
    more » « less
  2. Read, Andrew Fraser (Ed.)
    Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses. 
    more » « less
  3. The emergence of multiple strains of SARS-COV-2 has made it complicated to predict and control the COVID-19 pandemic. Although some vaccines have been effective in reducing the severity of the disease, these vaccines are designed for a specific strain of the virus and are usually less effective for other strains. In addition, the waning of vaccine-induced immunity, reinfection of recovered people, and incomplete vaccination are challenging to the vaccination program. In this study, we developed a detailed model to describe the multi-strain transmission dynamics of COVID-19 under vaccination. We implemented our model to examine the impact of inter-strain transmission competition under vaccination on the critical outbreak indicators: hospitalized cases, undiagnosed cases, basic reproduction numbers, and the overtake-time by a new strain to the existing strain. In particular, our results on the dependence of the overtake-time on vaccination rates, progression-to-infectious rate, and relative transmission rates provide helpful information for managing a pandemic with circulating two strains. Furthermore, our results suggest that a reduction in the relative transmission rates and a decrease in vaccination dropout rates or an increase in vaccination rates help keep the reproduction number of both strains below unity and keep the number of hospitalized cases and undiagnosed cases at their lowest levels. Moreover, our analysis shows that the second and booster-dose vaccinations are useful for further reducing the reproduction number. 
    more » « less
  4. null (Ed.)
    The future trajectory of the coronavirus disease 2019 (COVID-19) pandemic hinges on the dynamics of adaptive immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, salient features of the immune response elicited by natural infection or vaccination are still uncertain. We use simple epidemiological models to explore estimates for the magnitude and timing of future COVID-19 cases, given different assumptions regarding the protective efficacy and duration of the adaptive immune response to SARS-CoV-2, as well as its interaction with vaccines and nonpharmaceutical interventions. We find that variations in the immune response to primary SARS-CoV-2 infections and a potential vaccine can lead to markedly different immune landscapes and burdens of critically severe cases, ranging from sustained epidemics to near elimination. Our findings illustrate likely complexities in future COVID-19 dynamics and highlight the importance of immunological characterization beyond the measurement of active infections for adequately projecting the immune landscape generated by SARS-CoV-2 infections. 
    more » « less
  5. As the SARS-CoV-2 trajectory continues, the longer-term immuno-epidemiology of COVID-19, the dynamics of Long COVID, and the impact of escape variants are important outstanding questions. We examine these remaining uncertainties with a simple modelling framework that accounts for multiple (antigenic) exposures via infection or vaccination. If immunity (to infection or Long COVID) accumulates rapidly with the valency of exposure, we find that infection levels and the burden of Long COVID are markedly reduced in the medium term. More pessimistic assumptions on host adaptive immune responses illustrate that the longer-term burden of COVID-19 may be elevated for years to come. However, we also find that these outcomes could be mitigated by the eventual introduction of a vaccine eliciting robust (i.e. durable, transmission-blocking and/or ‘evolution-proof’) immunity. Overall, our work stresses the wide range of future scenarios that still remain, the importance of collecting real-world epidemiological data to identify likely outcomes, and the crucial need for the development of a highly effective transmission-blocking, durable and broadly protective vaccine. 
    more » « less