skip to main content

Title: Work-in-Progress: The Design and Implementation of EFRI-Research Experience in Mentoring Catalyst Initiative Paper
The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The more » community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative. « less
Authors:
Award ID(s):
2040078
Publication Date:
NSF-PAR ID:
10289601
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Sponsoring Org:
National Science Foundation
More Like this
  1. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP),more »and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. The redshirt model is comprised of seven main programmatic components aimed at improving the engagement, retention, and graduation of students underrepresented in engineering. These components include: “intrusive” academic advising and support services, an intensive first-year academic curriculum, community-building (including pre-matriculation summer programs), career awareness and vision, faculty mentorship, NSF S-STEM scholarships, and second-year support. Successful implementation of these activities is intended to produce two main long-term outcomes: a six-year graduation rate of 60%-75% for redshirt students, and increased rates of enrollment and graduation of Pell-eligible, URM, and women students in engineering at participating universities. In the first year of the grant (AY 16-17), SSPs developed their own redshirt programs, hired and trained staff, and got their programs off the ground. ERIs implemented faculty mentorship programs and expanded support to redshirt students into their sophomore year. In the second year (AY 17-18), redshirt programs were expanded at the ERIs while SSPs welcomed their first cohorts of redshirt students. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, identifying distinctions between them in addition to highlighting common elements. First-year assessment results are presented for the ERIs based on student surveys, performance, and retention outcomes. Ongoing research into faculty experiences is investigating how participation as mentors for redshirt students changes faculty mindsets and instructional practices. Ongoing research into student experiences is investigating how the varied curricula, advising, and cohort models used across the six institutions influence student retention and sense of identity as engineering students.« less
  2. With the help of the National Science Foundation (NSF), many Principal Investigators (PIs) have been able to mentor undergraduates through Research Experience for Undergraduates (REU) site awards. These REU sites are critical to the development of future graduate students, but can be challenging to run due to several required skills outside the scope of most faculty members' expertise, e.g., recruiting applicants, navigating the logistics of housing visiting undergraduate students, and tracking student outcomes after their REU experiences. In recent years, REU PIs in NSF's Computer & Information Science & Engineering (CISE) Directorate have come together through PI meetings to sharemore »best practices for running a successful REU site. While PIs inevitably take different approaches to running their sites based on their research projects, there is still a need to provide new PIs with guidance on the different aspects of an REU site such as identifying resources that can assist in recruiting women and underrepresented minority applicants, providing training for graduate students acting as mentors, and strategies for keeping a mentoring connection to undergraduate researchers after they return to their home institutions. Currently, REU site preparation and orientation for new PIs is a face-to-face process that requires careful planning and significant travel costs. The REU PI Guide, a set of web-based resources at https://www.vrac.iastate.edu/cise-reu-pi-resources/, was developed to share best practices of experienced PIs and build capacity within the REU PI community in a more scalable and cost-effective way. The REU PI Guide allows PIs to look up advice and guidance when needed and share their own best practices. This paper describes our approach to designing the REU PI Guide. The Guide is a database of documents, examples, and overviews of the different aspects of running an REU site. The Guide was developed by assessing new PIs' needs at an NSF workshop for new PIs, gathering existing resources from experienced PIs, creating and refining a website, and evaluation with new PIs. The website’s content and design will be refined through on-going feedback from PIs and other REU site stakeholders. This site has the potential broader impact to share best practices with REU PIs outside the CISE directorate and significantly ease the process of engaging future scientists via REU sites.« less
  3. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparationmore »and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce.« less
  4. With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts,more »providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges.« less
  5. Sustainability of the scientific enterprise requires being able to recruit, retain, and prepare ongoing generations of PhD-trained scientists ready to adapt with the evolving needs of the scientific workforce and society. This necessitates a broadened, trainee-centered view in doctoral and postdoctoral training—including a prominent focus on career planning, science across sectors, and development of professional skills. Although there is energy and movement to enhance graduate and postdoctoral training, actions remain disparate, leading to inefficiencies in implementation and lack of systemic change. In 2019, an emerging national initiative, Professional Development Hub (pd|hub), hosted a workshop to bring organizations and individuals togethermore »across stakeholder groups to discuss enhancing the development, dissemination, and widespread implementation of evidence-based practices for STEM graduate and postdoctoral education, with specific emphasis on career and professional development for PhD scientists. The fifty workshop participants represented nine key stakeholder groups: career development practitioners, scientific societies, disseminators, education researchers and evaluators, employers of PhD scientists, funders, professional associations, trainees, and university leaders and faculty. In addition, participants spanned different races, ethnicities, genders, disciplines, sectors, geographic locations, career stages, and levels of institutional resources. This report presents cross-cutting themes identified at the workshop, examples of stakeholder-specific perspectives, and recommended next steps. As part of the collective effort to develop a foundation for sustainable solutions, several actions were defined, including: incentivizing change at institutions and programs, curating and disseminating resources for evidence-based career and professional development educational practices, expanding evidence for effective training and mentoring, establishing expectations for STEM career and professional development, and improving communication across all stakeholders in STEM PhD education. Furthermore, the report describes national-level actions already moving forward via pd|hub in the months following the workshop. Building on a decade of reports and gatherings advocating for a shift in graduate and postdoctoral education, this workshop represented a key step and catalyst for change toward a more impactful future.« less