We describe our year-long astronomy program to engage middle and high school students with visual impairments (VI). The program bridges STEM skills acquired in school with out-of-school experiences to build student capacity for recognizing and pursuing STEM-related higher education and careers. The program combines mentorship experiences with a Project-Based Learning (PBL) curriculum that focuses on NGSS science and engineering practices and content. The paper begins with a description of unique 3D tactile models developed for the program. We then briefly describe recruitment and demographics of participating students with VI. The main part of the paper describes the 12-month PBL curriculum and connections with NGSS science and engineering practices and content focus areas. The full curriculum and implementation time line are provided in the supplemental material. External and internal evaluations of the program are described. Internally we evaluate the performance of our participating students in the areas of retention, communication, energy/enthusiasm, and responses to curriculum prompts. A rubric is developed to evaluate submitted assignments. Scores are provided and discussed from both a scientist evaluator and teacher evaluators. We conclude with a discussion and summary of crucial elements that contributed to increased retention/engagement, improved communication, and prolonged enthusiasm in STEM activities.
more »
« less
An Outdoor Project-Based Learning Program: Strategic Support and the Roles of Students with Visual Impairments Interested in STEM
A qualitative study was conducted to understand how middle and high school students with visual impairments (VI) engage in Science, Technology, Engineering and Mathematics (STEM). The Readiness Academy, a Project-Based Learning (PBL) intervention, was designed to provide a week-long, immersive, outdoor, and inquiry-based science education program to students with VI. We analyzed 187 photographs, camp associate intern notes, and researcher memos first using emotion coding, followed by process coding to structure initial codes and categories into seven research activities. We used axial coding as a secondary cycle coding method to determine four consistent themes across all research activities: apprenticeship, collaboration, accessibility, and independence. We found that the inclusion of purposeful accessibility, such as assistive technology and multisensory experiences, supported how students with VI engaged in STEM education. The findings reflect how students dynamically fulfilled roles as apprentices, collaborative members, and independent researchers within the program’s context of PBL and outdoor science education.
more »
« less
- Award ID(s):
- 1657201
- PAR ID:
- 10289626
- Date Published:
- Journal Name:
- Journal of science education and technology
- Volume:
- 30
- ISSN:
- 1059-0145
- Page Range / eLocation ID:
- 74-86
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sonification is a method to represent data and convey information using sound. Just like the Geiger counter, humans can use sound to better understand complex sets of data that are either unable to be seen or visualized or that are too complex to understand with visual displays. Sonification research and learning have been predominantly conducted at the higher education level. However, as STEM-related programs and activities continue to be increasingly important in secondary school education, it is possible to expose high school students to university-level research through project-based learning (PBL) activities in the classroom. Using a physical snake robot prototype that was built and programmed with low-cost materials, high school students are introduced to the field of sonification and its applications to snake robots. This dissertation demonstrates the feasibility of using project-based learning to teach university level research in secondary school education. Using the sonification of snake robot movement, students learned advanced topics in robotics with the goal of realizing that university level research is accessible and understandable through PBL. This paper will begin by discussing the concept of human-robot interaction, introduce sonification, and give a brief overview of project-based learning. A detailed discussion of how the snake robot prototype was constructed and programmed, an in-depth explanation of the sonification algorithm that was used, and how sonification was taught in a high school classroom using PBL is presented along with student feedback and suggestions for future work.more » « less
-
Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom. We addressed these challenges by implementing professional development in which school counselors and teachers collaborate to design PBL units aligned with rural community local needs and STEM careers. Using a descriptive multiple-case study methodology to document the experiences of three teams of educators, we used cross-case analysis to explore how the teams integrated PBL and PBE principles to foster meaningful learning experiences and enhance career awareness among students. The research questions focused on each team’s implementation of the PBL units based on key PBL design elements and how they integrated local community connections and places. Initial findings suggest that while teams effectively engaged with community members and integrated STEM career connections, they faced challenges in broadly applying learning and assessment practices. We highlight the potential of PBE to enhance rural STEM education and emphasize the need for long-term professional development to equip teachers with the skills necessary to integrate STEM content and career development effectively.more » « less
-
Banu, Eliza A. (Ed.)Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was moderately successful. Overall, these results highlight the need to make extracurricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM.more » « less
-
null (Ed.)Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was only moderately successful, highlighting the need to make extra-curricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM.more » « less
An official website of the United States government

