Latent variable models for text, when trained successfully, accurately model the data distribution and capture global semantic and syntactic features of sentences. The prominent approach to train such models is variational autoencoders (VAE). It is nevertheless challenging to train and often results in a trivial local optimum where the latent variable is ignored and its posterior collapses into the prior, an issue known as posterior collapse. Various techniques have been proposed to mitigate this issue. Most of them focus on improving the inference model to yield latent codes of higher quality. The present work proposes a short run dynamics formore »
Learning multi-layer latent variable model with short run MCMC inference dynamics
This paper studies the fundamental problem of learning deep generative models that consist of multiple layers of latent variables organized in top-down architectures. Such models have high expressivity and allow for learning hierarchical representations. Learning such a generative model requires inferring the latent variables for each training example based on the posterior distribution of these latent variables. The inference typically requires Markov chain Monte Caro (MCMC) that can be time consuming. In this paper, we propose to use noise initialized non-persistent short run MCMC, such as nite step Langevin dynamics initialized from the prior distribution of the latent variables, as an approximate inference engine, where the step size of the Langevin dynamics is variationally optimized by minimizing the Kullback-Leibler divergence between the distribution produced by the short run MCMC and the posterior distribution. Our experiments show that the proposed method outperforms variational auto-encoder (VAE) in terms of reconstruction error and synthesis quality. The advantage of the proposed method is that it is simple and automatic without the need to design an inference
model.
- Award ID(s):
- 2015577
- Publication Date:
- NSF-PAR ID:
- 10289712
- Journal Name:
- European Conference on Computer Vision
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep probabilistic time series forecasting models have become an integral part of machine learning. While several powerful generative models have been proposed, we provide evidence that their associated inference models are oftentimes too limited and cause the generative model to predict mode-averaged dynamics. Mode-averaging is problematic since many real-world sequences are highly multi-modal, and their averaged dynamics are unphysical (e.g., predicted taxi trajectories might run through buildings on the street map). To better capture multi-modality, we develop variational dynamic mixtures (VDM): a new variational family to infer sequential latent variables. The VDM approximate posterior at each time step is amore »
-
This paper studies the unsupervised cross-domain translation problem by proposing a generative framework, in which the probability distribution of each domain is represented by a generative cooperative network that consists of an energy based model and a latent variable model. The use of generative cooperative network enables maximum likelihood learning of the domain model by MCMC teaching, where the energy-based model seeks to fit the data distribution of domain and distills its knowledge to the latent variable model via MCMC. Specifically, in the MCMC teaching process, the latent variable model parameterized by an encoder-decoder maps examples from the source domainmore »
-
Inferring the input parameters of simulators from observations is a crucial challenge with applications from epidemiology to molecular dynamics. Here we show a simple approach in the regime of sparse data and approximately correct models, which is common when trying to use an existing model to infer latent variables with observed data. This approach is based on the principle of maximum entropy (MaxEnt) and provably makes the smallest change in the latent joint distribution to fit new data. This method requires no likelihood or model derivatives and its fit is insensitive to prior strength, removing the need to balance observedmore »
-
Hydropower is the largest renewable energy source for electricity generation in the world, with numerous benefits in terms of: environment protection (near-zero air pollution and climate impact), cost-effectiveness (long-term use, without significant impacts of market fluctuation), and reliability (quickly respond to surge in demand). However, the effectiveness of hydropower plants is affected by multiple factors such as reservoir capacity, rainfall, temperature and fluctuating electricity demand, and particularly their complicated relationships, which make the prediction/recommendation of station operational output a difficult challenge. In this paper, we present DeepHydro, a novel stochastic method for modeling multivariate time series (e.g., water inflow/outflow andmore »