skip to main content


Title: Satellites around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations versus Simulations
Award ID(s):
1814208
NSF-PAR ID:
10289768
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
916
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
    ABSTRACT We derive joint constraints on the warm dark matter (WDM) half-mode scale by combining the analyses of a selection of astrophysical probes: strong gravitational lensing with extended sources, the Ly α forest, and the number of luminous satellites in the Milky Way. We derive an upper limit of λhm = 0.089 Mpc h−1 at the 95 per cent confidence level, which we show to be stable for a broad range of prior choices. Assuming a Planck cosmology and that WDM particles are thermal relics, this corresponds to an upper limit on the half-mode mass of Mhm < 3 × 107 M⊙ h−1, and a lower limit on the particle mass of mth > 6.048 keV, both at the 95 per cent confidence level. We find that models with λhm > 0.223 Mpc h−1 (corresponding to mth > 2.552 keV and Mhm < 4.8 × 108 M⊙ h−1) are ruled out with respect to the maximum likelihood model by a factor ≤1/20. For lepton asymmetries L6 > 10, we rule out the 7.1 keV sterile neutrino dark matter model, which presents a possible explanation to the unidentified 3.55 keV line in the Milky Way and clusters of galaxies. The inferred 95 percentiles suggest that we further rule out the ETHOS-4 model of self-interacting DM. Our results highlight the importance of extending the current constraints to lower half-mode scales. We address important sources of systematic errors and provide prospects for how the constraints of these probes can be improved upon in the future. 
    more » « less
  3. ABSTRACT The satellite populations of the Milky Way, and Milky Way mass galaxies in the local Universe, have been extensively studied to constrain dark matter and galaxy evolution physics. Recently, there has been a shift to studying satellites of hosts with stellar masses between that of the Large Magellanic Cloud and the Milky Way, since they can provide further insight on hierarchical structure formation, environmental effects on satellites, and the nature of dark matter. Most work is focused on the Local Volume, and little is still known about low-mass host galaxies at higher redshift. To improve our understanding of the evolution of satellite populations of low-mass hosts, we study satellite galaxy populations as a function of host stellar mass 9.5 < log (M*/M⊙) < 10.5 and redshifts 0.1 < $z$ < 0.8 in the COSMOS survey, making this the first study of satellite systems of low-mass hosts across half the age of the universe. We find that the satellite populations of low-mass host galaxies, which we measure down to satellite masses equivalent to the Fornax dwarf spheroidal satellite of the Milky Way, remain mostly unchanged through time. We observe a weak dependence between host stellar mass and number of satellites per host, which suggests that the stellar masses of the hosts are in the power-law regime of the stellar mass to halo mass relation (M*–Mhalo) for low-mass galaxies. Finally, we test the constraining power of our measured cumulative luminosity function to calculate the low-mass end slope of the M*–Mhalo relation. These new satellite luminosity function measurements are consistent with Lamda cold dark matter predictions. 
    more » « less