skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deposition pressure-induced microstructure control and plasmonic property tuning in hybrid ZnO–Ag x Au 1−x thin films
Self-assembled oxide–metallic alloy nanopillars as hybrid plasmonic metamaterials ( e.g. , ZnO–Ag x Au 1−x ) in a thin film form have been grown using a pulsed laser deposition method. The hybrid films were demonstrated to be highly tunable via systematic tuning of the oxygen background pressure during deposition. The pressure effects on morphology and optical properties have been investigated and found to be critical to the overall properties of the hybrid films. Specifically, low background pressure results in the vertically aligned nanocomposite (VAN) form while the high-pressure results in more lateral growth of the nanoalloys. Strong surface plasmon resonance was observed in the UV-vis region and a hyperbolic dielectric function was achieved due to the anisotropic morphology. The oxide–nanoalloy hybrid material grown in this work presents a highly effective approach for tuning the binary nanoalloy morphology and properties through systematic parametric changes, important for their potential applications in integrated photonics and plasmonics such as sensors, energy harvesting devices, and beyond.  more » « less
Award ID(s):
1565822
PAR ID:
10289930
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
3
Issue:
10
ISSN:
2516-0230
Page Range / eLocation ID:
2870 to 2878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybrid perovskite materials have emerged as excellent candidates for next-generation optoelectronic applications. Nevertheless, many vapor deposition techniques face challenges like phase segregation, thermal decomposition, and nonstoichiometric film growth. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) addresses these challenges by eliminating thermal stability concerns for precursor materials while maintaining stoichiometry and producing high-quality film growth. Despite its advantages, scaling up RIR-MAPLE remains underexplored compared to conventional techniques. A main challenge is to ensure high throughput with precise control over film properties. RIR-MAPLE films are typically grown under an active vacuum (chamber pressure of ∼10−5 Torr). Film deposition under background gas pressure has not been investigated, leaving questions about how an inert gas environment could influence material properties. Thus, understanding film deposition in a reduced vacuum environment with background inert gas, such as nitrogen gas, is crucial to demonstrate the feasibility of higher throughput to achieve industrial scalability. This study examines the effect of nitrogen background pressure on the deposition of two-dimensional hybrid perovskite films, namely, phenethylammonium lead iodide revealing significant improvements in film crystallinity, optical properties, and defect density with increasing background pressure, thereby highlighting the potential for scaling RIR-MAPLE for the synthesis of high-performance hybrid perovskite films. 
    more » « less
  2. We have stabilized epitaxial oxide thin films of transparent, magnetic Ru-doped BaSnO3. Films were grown by pulsed laser deposition and exhibited excellent epitaxy and crystallinity as determined by x-ray diffraction. Epitaxial films of Ru doped BaSnO3 were grown with a ceramic target of nominally 4% Ru doping on the Sn site but resulted in 3% Ru doping in the  lms. Paramagnetic behavior is observed in all  lms with a Curie law dependence on temperature. The field dependence of the magnetization shows a paramagnetic moment that saturates at a value consistent with low spin Ru. Films are also found to be transparent in the visible regime. Together these results demonstrate the realization of highly crystalline, transparent, paramagnetic,epitaxial doped BaSnO3 films. 
    more » « less
  3. Phase pure β-(Al x Ga 1−x ) 2 O 3 thin films are grown on (001) oriented β-Ga 2 O 3 substrates via metalorganic chemical vapor deposition. By systematically tuning the precursor molar flow rates, the epitaxial growth of coherently strained β-(Al x Ga 1−x ) 2 O 3 films is demonstrated with up to 25% Al compositions as evaluated by high resolution x-ray diffraction. The asymmetrical reciprocal space mapping confirms the growth of coherent β-(Al x Ga 1−x ) 2 O 3 films (x < 25%) on (001) β-Ga 2 O 3 substrates. However, the alloy inhomogeneity with local segregation of Al along the ([Formula: see text]) plane is observed from atomic resolution STEM imaging, resulting in wavy and inhomogeneous interfaces in the β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 superlattice structure. Room temperature Raman spectra of β-(Al x Ga 1−x ) 2 O 3 films show similar characteristics peaks as the (001) β-Ga 2 O 3 substrate without obvious Raman shifts for films with different Al compositions. Atom probe tomography was used to investigate the atomic level structural chemistry with increasing Al content in the β-(Al x Ga 1−x ) 2 O 3 films. A monotonous increase in chemical heterogeneity is observed from the in-plane Al/Ga distributions, which was further confirmed via statistical frequency distribution analysis. Although the films exhibit alloy fluctuations, n-type doping demonstrates good electrical properties for films with various Al compositions. The determined valence and conduction band offsets at β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 heterojunctions using x-ray photoelectron spectroscopy reveal the formation of type-II (staggered) band alignment. 
    more » « less
  4. Metamaterials present great potential in the applications of solar cells and nanophotonics, such as super lenses and other meta devices, owing to their superior optical properties. In particular, hyperbolic metamaterials (HMMs) with exceptional optical anisotropy offer improved manipulation of light–matter interactions as well as a divergence in the density of states and thus show enhanced performances in related fields. Recently, the emerging field of oxide–metal vertically aligned nanocomposites (VANs) suggests a new approach to realize HMMs with flexible microstructural modulations. In this work, a new oxide–metal metamaterial system, CeO 2 –Au, has been demonstrated with variable Au phase morphologies from nanoparticle-in-matrix (PIM), nanoantenna-in-matrix, to VAN. The effective morphology tuning through deposition background pressure, and the corresponding highly tunable optical performance of three distinctive morphologies, were systematically explored and analyzed. A hyperbolic dispersion at high wavelength has been confirmed in the nano-antenna CeO 2 –Au thin film, proving this system as a promising candidate for HMM applications. More interestingly, a new and abnormal in-plane epitaxy of Au nanopillars following the large mismatched CeO 2 matrix instead of the well-matched SrTiO 3 substrate, was discovered. Additionally, the tilting angle of Au nanopillars, α , has been found to be a quantitative measure of the balance between kinetics and thermodynamics during the depositions of VANs. All these findings provide valuable information in the understanding of the VAN formation mechanisms and related morphology tuning. 
    more » « less
  5. Lithium lanthanum tantalate (Li3xLa1/3−xTaO3, x = 0.075) thin films were grown via pulsed laser deposition using background gas atmospheres with varying partial pressures of oxygen and argon. The background gas composition was varied from 100% to 6.6% oxygen, with the pressure fixed at 150 mTorr. The maximum ion conductivity of 1.5 × 10−6 S/cm was found for the film deposited in 100% oxygen. The ion conductivity of the films was found to decrease with reduced oxygen content from 100% to 16.6% O2 in the background gas. The 6.6% oxygen background condition produced ion conductivity that approached that of the 100% oxygen condition film. The lithium transfer from the target to the film was found to decrease monotonically with decreasing oxygen content in the background gas but did not account for all changes in the ion conductivity. The activation energy of ion conduction was measured and found to correlate well with the measured ion conductivity trends. Analysis of x-ray diffraction results revealed that the films also exhibited a change in the lattice parameter that directly correlated with the ion conduction activation energy, indicating that a primary factor for determining the conductivity of these films is the changing size of the ion conduction bottleneck, which controls the activation energy of ion conduction. 
    more » « less