skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting Table Beet Root Yield with Multispectral UAS Imagery
Timely and accurate monitoring has the potential to streamline crop management, harvest planning, and processing in the growing table beet industry of New York state. We used unmanned aerial system (UAS) combined with a multispectral imager to monitor table beet (Beta vulgaris ssp. vulgaris) canopies in New York during the 2018 and 2019 growing seasons. We assessed the optimal pairing of a reflectance band or vegetation index with canopy area to predict table beet yield components of small sample plots using leave-one-out cross-validation. The most promising models were for table beet root count and mass using imagery taken during emergence and canopy closure, respectively. We created augmented plots, composed of random combinations of the study plots, to further exploit the importance of early canopy growth area. We achieved a R2 = 0.70 and root mean squared error (RMSE) of 84 roots (~24%) for root count, using 2018 emergence imagery. The same model resulted in a RMSE of 127 roots (~35%) when tested on the unseen 2019 data. Harvested root mass was best modeled with canopy closing imagery, with a R2 = 0.89 and RMSE = 6700 kg/ha using 2018 data. We applied the model to the 2019 full-field imagery and found an average yield of 41,000 kg/ha (~40,000 kg/ha average for upstate New York). This study demonstrates the potential for table beet yield models using a combination of radiometric and canopy structure data obtained at early growth stages. Additional imagery of these early growth stages is vital to develop a robust and generalized model of table beet root yield that can handle imagery captured at slightly different growth stages between seasons.  more » « less
Award ID(s):
1827551
PAR ID:
10290130
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
11
ISSN:
2072-4292
Page Range / eLocation ID:
2180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Accurate, precise, and timely estimation of crop yield is key to a grower’s ability to proactively manage crop growth and predict harvest logistics. Such yield predictions typically are based on multi-parametric models and in-situ sampling. Here we investigate the extension of a greenhouse study, to low-altitude unmanned aerial systems (UAS). Our principal objective was to investigate snap bean crop (Phaseolus vulgaris) yield using imaging spectroscopy (hyperspectral imaging) in the visible to near-infrared (VNIR; 400–1000 nm) region via UAS. We aimed to solve the problem of crop yield modelling by identifying spectral features explaining yield and evaluating the best time period for accurate yield prediction, early in time. We introduced a Python library, named Jostar, for spectral feature selection. Embedded in Jostar, we proposed a new ranking method for selected features that reaches an agreement between multiple optimization models. Moreover, we implemented a well-known denoising algorithm for the spectral data used in this study. This study benefited from two years of remotely sensed data, captured at multiple instances over the summers of 2019 and 2020, with 24 plots and 18 plots, respectively. Two harvest stage models, early and late harvest, were assessed at two different locations in upstate New York, USA. Six varieties of snap bean were quantified using two components of yield, pod weight and seed length. We used two different vegetation detection algorithms. the Red-Edge Normalized Difference Vegetation Index (RENDVI) and Spectral Angle Mapper (SAM), to subset the fields into vegetation vs. non-vegetation pixels. Partial least squares regression (PLSR) was used as the regression model. Among nine different optimization models embedded in Jostar, we selected the Genetic Algorithm (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) and their resulting joint ranking. The findings show that pod weight can be explained with a high coefficient of determination (R2 = 0.78–0.93) and low root-mean-square error (RMSE = 940–1369 kg/ha) for two years of data. Seed length yield assessment resulted in higher accuracies (R2 = 0.83–0.98) and lower errors (RMSE = 4.245–6.018 mm). Among optimization models used, ACO and SA outperformed others and the SAM vegetation detection approach showed improved results when compared to the RENDVI approach when dense canopies were being examined. Wavelengths at 450, 500, 520, 650, 700, and 760 nm, were identified in almost all data sets and harvest stage models used. The period between 44–55 days after planting (DAP) the optimal time period for yield assessment. Future work should involve transferring the learned concepts to a multispectral system, for eventual operational use; further attention should also be paid to seed length as a ground truth data collection technique, since this yield indicator is far more rapid and straightforward. 
    more » « less
  2. Crop yield is related to household food security and community resilience, especially in smallholder agricultural systems. As such, it is crucial to accurately estimate within-season yield in order to provide critical information for farm management and decision making. Therefore, the primary objective of this paper is to assess the most appropriate method, indices, and growth stage for predicting the groundnut yield in smallholder agricultural systems in northern Malawi. We have estimated the yield of groundnut in two smallholder farms using the observed yield and vegetation indices (VIs), which were derived from multitemporal PlanetScope satellite data. Simple linear, multiple linear (MLR), and random forest (RF) regressions were applied for the prediction. The leave-one-out cross-validation method was used to validate the models. The results showed that (i) of the modelling approaches, the RF model using the five most important variables (RF5) was the best approach for predicting the groundnut yield, with a coefficient of determination (R2) of 0.96 and a root mean square error (RMSE) of 0.29 kg/ha, followed by the MLR model (R2 = 0.84, RMSE = 0.84 kg/ha); in addition, (ii) the best within-season stage to accurately predict groundnut yield is during the R5/beginning seed stage. The RF5 model was used to estimate the yield for four different farms. The estimated yields were compared with the total reported yields from the farms. The results revealed that the RF5 model generally accurately estimated the groundnut yields, with the margins of error ranging between 0.85% and 11%. The errors are within the post-harvest loss margins in Malawi. The results indicate that the observed yield and VIs, which were derived from open-source remote sensing data, can be applied to estimate yield in order to facilitate farming and food security planning. 
    more » « less
  3. Farmers and growers typically use approaches based on the crop environment and local meteorology, many of which are labor-intensive, to predict crop yield. These approaches have found broad acceptance but lack real-time and physiological feedback for near-daily management purposes. This is true for broad-acre crops, such as snap bean, which is valued at hundreds of millions of dollars in the annual agricultural market. We aim to investigate the relationships between snap bean yield and plant spectral and biophysical information, collected using a hyperspectral spectroradiometer (400 to 2500 nm). The experiment focused on 48 single snap bean plants (cv. Huntington) in a controlled greenhouse environment during the growth period (69 days). We used applicable accuracy and precision metrics from partial least squares regression and cross-validation methods to evaluate the predictive ability of two harvest stages, namely an early-harvest and late-harvest stage, against our yield indicator (bean pod weight). Four different spectral data sets were used to investigate whether such oversampled, hyperspectral data sets could accurately and precisely model observed variability in yield, in terms of the coefficient of determination (R2) and root-mean-square error (RMSE). The objective of our approach hinges on the philosophy that selected spectral bands from this study, i.e., those that best explain yield variability, can be downsampled from a hyperspectral system for use in a more cost-effective, operational multispectral sensor. Our results suggested the optimal period for spectral evaluation of snap bean yield is 20 to 25 or 32 days prior to harvest for the early- and late-harvest stages, respectively, with the best model performing at a low RMSE (3.02 g/plant) and a high coefficient of determination (R2 = 0.72). An unmanned aerial systems-mounted, affordable, and wavelength-programmable multispectral imager, with bands corresponding to those identified, could provide a near real-time and reliable yield estimate prior to harvest. 
    more » « less
  4. Unmanned aerial vehicles (UAVs) equipped with multispectral sensors offer high spatial and temporal resolution imagery for monitoring crop stress at early stages of development. Analysis of UAV-derived data with advanced machine learning models could improve real-time management in agricultural systems, but guidance for this integration is currently limited. Here we compare two deep learning-based strategies for early warning detection of crop stress, using multitemporal imagery throughout the growing season to predict field-scale yield in irrigated rice in eastern Arkansas. Both deep learning strategies showed improvements upon traditional statistical learning approaches including linear regression and gradient boosted decision trees. First, we explicitly accounted for variation across developmental stages using a 3D convolutional neural network (CNN) architecture that captures both spatial and temporal dimensions of UAV images from multiple time points throughout one growing season. 3D-CNNs achieved low prediction error on the test set, with a Root Mean Squared Error (RMSE) of 8.8% of the mean yield. For the second strategy, a 2D-CNN, we considered only spatial relationships among pixels for image features acquired during a single flyover. 2D-CNNs trained on images from a single day were most accurate when images were taken during booting stage or later, with RMSE ranging from 7.4 to 8.2% of the mean yield. A primary benefit of convolutional autoencoder-like models (based on analyses of prediction maps and feature importance) is the spatial denoising effect that corrects yield predictions for individual pixels based on the values of vegetation index and thermal features for nearby pixels. Our results highlight the promise of convolutional autoencoders for UAV-based yield prediction in rice. 
    more » « less
  5. In recent years, the utilization of machine learning algorithms and advancements in unmanned aerial vehicle (UAV) technology have caused significant shifts in remote sensing practices. In particular, the integration of machine learning with physical models and their application in UAV–satellite data fusion have emerged as two prominent approaches for the estimation of vegetation biochemistry. This study evaluates the performance of five machine learning regression algorithms (MLRAs) for the mapping of crop canopy chlorophyll at the Kellogg Biological Station (KBS) in Michigan, USA, across three scenarios: (1) application to Landsat 7, RapidEye, and PlanetScope satellite images; (2) application to UAV–satellite data fusion; and (3) integration with the PROSAIL radiative transfer model (hybrid methods PROSAIL + MLRAs). The results indicate that the majority of the five MLRAs utilized in UAV–satellite data fusion perform better than the five PROSAIL + MLRAs. The general trend suggests that the integration of satellite data with UAV-derived information, including the normalized difference red-edge index (NDRE), canopy height model, and leaf area index (LAI), significantly enhances the performance of MLRAs. The UAV–RapidEye dataset exhibits the highest coefficient of determination (R2) and the lowest root mean square errors (RMSE) when employing kernel ridge regression (KRR) and Gaussian process regression (GPR) (R2 = 0.89 and 0.89 and RMSE = 8.99 µg/cm2 and 9.65 µg/cm2, respectively). Similar performance is observed for the UAV–Landsat and UAV–PlanetScope datasets (R2 = 0.86 and 0.87 for KRR, respectively). For the hybrid models, the maximum performance is attained with the Landsat data using KRR and GPR (R2 = 0.77 and 0.51 and RMSE = 33.10 µg/cm2 and 42.91 µg/cm2, respectively), followed by R2 = 0.75 and RMSE = 39.78 µg/cm2 for the PlanetScope data upon integrating partial least squares regression (PLSR) into the hybrid model. Across all hybrid models, the RapidEye data yield the most stable performance, with the R2 ranging from 0.45 to 0.71 and RMSE ranging from 19.16 µg/cm2 to 33.07 µg/cm2. The study highlights the importance of synergizing UAV and satellite data, which enables the effective monitoring of canopy chlorophyll in small agricultural lands. 
    more » « less