skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Activation of PERK-Nrf2 oncogenic signaling promotes Mdm2-mediated Rb degradation in persistently infected HCV culture
Abstract The mechanism of how chronic hepatitis C virus (HCV) infection leads to such a high rate of hepatocellular carcinoma (HCC) is unknown. We found that the PERK axis of endoplasmic reticulum (ER) stress elicited prominent nuclear translocation of Nrf2 in 100% of HCV infected hepatocytes. The sustained nuclear translocation of Nrf2 in chronically infected culture induces Mdm2-mediated retinoblastoma protein (Rb) degradation. Silencing PERK and Nrf2 restored Mdm2-mediated Rb degradation, suggesting that sustained activation of PERK/Nrf2 axis creates oncogenic stress in chronically infected HCV culture model. The activation of Nrf2 and its nuclear translocation were prevented by ER-stress and PERK inhibitors, suggesting that PERK axis is involved in the sustained activation of Nrf2 signaling during chronic HCV infection. Furthermore, we show that HCV clearance induced by interferon-α based antiviral normalized the ER-stress response and prevented nuclear translocation of Nrf2, whereas HCV clearance by DAAs combination does neither. In conclusion, we report here a novel mechanism for how sustained activation of PERK axis of ER-stress during chronic HCV infection activates oncogenic Nrf2 signaling that promotes hepatocyte survival and oncogenesis by inducing Mdm2-mediated Rb degradation.  more » « less
Award ID(s):
1659752 1359140
PAR ID:
10290133
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
7
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf‐like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER‐to‐nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system‐level regulatory mechanisms that collectively fine‐tune ethylene responses to optimize plant growth, development, and stress adaptation. 
    more » « less
  2. Abstract HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people. 
    more » « less
  3. Hepatitis C Virus NS3/NS4A, a serine protease complex, has been found to interact with many host proteins and cause various adverse effects on cellular function and immune response. For example, the cleavage of important immune factors by NS3/NS4A has been suggested as a mechanism for the hepatitis C virus to evade innate immunity. The spectrum of susceptible substrates for NS3/NS4A cleavage certainly includes important immune modulator kinases such as IKKα, IKKβ, IKKε, and TBK1, as demonstrated in this paper. We show that the kinase activities of these four host kinases were transformed in unexpected ways by NS3/NS4A. Treatment with NS3/NS4A caused a significant reduction in the kinase activities of both IKKα and IKKβ, suggesting that HCV might use its NS3/NS4A protease activity to deactivate the NF-κB-associated innate immune responses. In contrast, the kinase activities of both IKKε and TBK1 were enhanced after NS3/NS4A treatment, and more strikingly, the enhancement was more than 10-fold within 20 min of treatment. Our mass spectroscopic results suggested that the cleavage after Cys89 in the kinase domain of IKKε by NS3/NS4A led to their higher kinase activities, and three potential mechanisms were discussed. The observed kinase activity enhancement might facilitate the activation of both IKKε- and TBK1-dependent cellular antiviral pathways, likely contributing to spontaneous clearance of the virus and observed acute HCV infection. After longer than 20 min cleavage, both IKKε- and TBK1 gradually lost their kinase activities and the relevant antiviral pathways were expected to be inactivated, facilitating the establishment of chronic HCV infection. 
    more » « less
  4. Chen, W (Ed.)
    Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response. 
    more » « less
  5. Breast and mammary epithelial cells experience different local environments during tissue development and tumorigenesis. Microenvironmental heterogeneity gives rise to distinct cell regulatory states whose identity and importance are just beginning to be appreciated. Cellular states diversify when clonal three-dimensional (3D) spheroids are cultured in basement membrane, and one such state is associated with stress tolerance and poor response to anticancer therapeutics. Here, we found that this state was jointly coordinated by the NRF2 and p53 pathways, which were costabilized by spontaneous oxidative stress within 3D cultures. Inhibition of NRF2 or p53 individually disrupted some of the transcripts defining the regulatory state but did not yield a notable phenotype in nontransformed breast epithelial cells. In contrast, combined perturbation prevented 3D growth in an oxidative stress–dependent manner. By integrating systems models of NRF2 and p53 signaling in a single oxidative stress network, we recapitulated these observations and made predictions about oxidative stress profiles during 3D growth. NRF2 and p53 signaling were similarly coordinated in normal breast epithelial tissue and hormone-negative ductal carcinoma in situ lesions but were uncoupled in triple-negative breast cancer (TNBC), a subtype in which p53 is usually mutated. Using the integrated model, we correlated the extent of this uncoupling in TNBC cell lines with the importance of NRF2 in the 3D growth of these cell lines and their predicted handling of oxidative stress. Our results point to an oxidative stress tolerance network that is important for single cells during glandular development and the early stages of breast cancer. 
    more » « less