skip to main content


Title: Vascular Patterning as Integrative Readout of Complex Molecular and Physiological Signaling by VESsel GENeration Analysis
The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA’s globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique “fingerprint” or “biomarker” vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.  more » « less
Award ID(s):
1359140 1659752
NSF-PAR ID:
10290322
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Date Published:
Journal Name:
Journal of Vascular Research
Volume:
58
Issue:
4
ISSN:
1018-1172
Page Range / eLocation ID:
207 to 230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cancer-associated fibroblasts (CAFs) play an active role in remodeling the local tumor stroma to support tumor initiation, growth, invasion, metastasis, and therapeutic resistance. The CAF-secreted chemokine, CXCL12, has been directly implicated in the tumorigenic progression of carcinomas, including breast cancer. Using a 3-D in vitro microfluidic-based microtissue model, we demonstrate that stromal CXCL12 secreted by CAFs has a potent effect on increasing the vascular permeability of local blood microvessel analogues through paracrine signaling. Moreover, genetic deletion of fibroblast-specific CXCL12 significantly reduced vessel permeability compared to CXCL12 secreting CAFs within the recapitulated tumor microenvironment (TME). We suspected that fibroblast-mediated extracellular matrix (ECM) remodeling and contraction indirectly accounted for this change in vessel permeability. To this end, we investigated the autocrine effects of CXCL12 on fibroblast contractility and determined that antagonistic blocking of CXCL12 did not have a substantial effect on ECM contraction. Our findings indicate that fibroblast-secreted CXCL12 has a significant role in promoting a leakier endothelium hospitable to angiogenesis and tumor cell intravasation; however, autocrine CXCL12 is not the primary upstream trigger of CAF contractility. 
    more » « less
  2. Abstract Objective

    Microvascular remodeling is governed by biomechanical and biochemical cues which are dysregulated in idiopathic pulmonary fibrosis. Understanding how these cues impact endothelial cell‐pericyte interactions necessitates a model system in which both variables can be independently and reproducibly modulated. In this study we develop a tunable hydrogel‐based angiogenesis assay to study how varying angiogenic growth factors and environmental stiffness affect sprouting and vessel organization.

    Methods

    Lungs harvested from mice were cut into 1 mm long segments then cultured on hydrogels having one of seven possible stiffness and growth factor combinations. Time course, brightfield, and immunofluorescence imaging were used to observe and quantify sprout formation.

    Results

    Our assay was able to support angiogenesis in a comparable manner to Matrigel in soft 2 kPa gels while enabling tunability to study the effects of stiffness on sprout formation. Matrigel and 2 kPa groups contained significantly more samples with sprouts when compared to the stiffer 10 and 20 kPa gels. Growth factor treatment did not have as obvious an effect, although the 20 kPa PDGF + FGF‐treated group had significantly longer vessels than the vascular endothelial growth factor‐treated group.

    Conclusions

    We have developed a novel, tunable hydrogel assay for the creation of lung explant vessel organoids which can be modulated to study the impact of specific environmental cues on vessel formation and maturation.

     
    more » « less
  3. Abstract

    The wall shear stress (WSS) exerted by blood flowing through microvascular capillaries is an established driver of new blood vessel growth, or angiogenesis. Such adaptations are central to many physiological processes in both health and disease, yet three-dimensional (3D) WSS characteristics in real angiogenic microvascular networks are largely unknown. This marks a major knowledge gap because angiogenesis, naturally, is a 3D process. To advance current understanding, we model 3D red blood cells (RBCs) flowing through rat angiogenic microvascular networks using state-of-the-art simulation. The high-resolution fluid dynamics reveal 3D WSS patterns occurring at sub-endothelial cell (EC) scales that derive from distinct angiogenic morphologies, including microvascular loops and vessel tortuosity. We identify the existence of WSS hot and cold spots caused by angiogenic surface shapes and RBCs, and notably enhancement of low WSS regions by RBCs. Spatiotemporal characteristics further reveal how fluctuations follow timescales of RBC “footprints.” Altogether, this work provides a new conceptual framework for understanding how shear stress might regulate EC dynamics in vivo.

     
    more » « less
  4. Abstract Objective

    Define a role for perivascular cells during developmental retinal angiogenesis in the context of EC Notch1‐DLL4 signaling at the multicellular network level.

    Methods

    The retinal vasculature is highly sensitive to growth factor‐mediated intercellular signaling. Although EC signaling has been explored in detail, it remains unclear how PC function to modulate these signals that lead to a diverse set of vascular network patterns in health and disease. We have developed an ABM of retinal angiogenesis that incorporates both ECs and PCs to investigate the formation of vascular network patterns as a function of pericyte coverage. We use our model to test the hypothesis that PC modulate Notch1‐DLL4 signaling in endothelial cell‐endothelial cell interactions.

    Results

    Agent‐based model (ABM) simulations that include PCs more accurately predict experimentally observed vascular network morphologies than simulations that lack PCs, suggesting that PCs may influence sprouting behaviors through physical blockade of endothelial intercellular connections.

    Conclusions

    This study supports a role for PCs as a physical buffer to signal propagation during vascular network formation—a barrier that may be important for generating healthy microvascular network patterns.

     
    more » « less
  5. Abstract

    Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular‐derived or angiocrine cues offer an important alternative signaling axis for biomaterial‐based stem cell platforms. Elucidating dose‐dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co‐cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage‐positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.

     
    more » « less