skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher West Nile Virus Infection in Aedes albopictus (Diptera: Culicidae) and Culex (Diptera: Culicidae) Mosquitoes From Lower Income Neighborhoods in Urban Baltimore, MD
Abstract The temperate United States has experienced increasing incidence of mosquito-borne diseases. Recent studies conducted in Baltimore, MD have demonstrated a negative relationship between abundances of Aedes albopictus (Skuse) and Culex mosquitoes and mean neighborhood income level, but have not looked at the presence of pathogens. Mosquitoes collected from five socioeconomically variable neighborhoods were tested for infection by West Nile, chikungunya, and Zika viruses in 2015 and 2016, and again from four of the neighborhoods in 2017. Minimum infection rates of pooled samples were compared among neighborhoods for each year, as well as among individual blocks in 2017. West Nile virus was detected in both Ae. albopictus and Culex pools from all neighborhoods sampled in 2015 and 2017. No infected pools were detected in any year for chikungunya or Zika viruses, and none of the target viruses were detected in 2016. Infection rates were consistently higher for Culex than for Ae. albopictus. Minimum infection rate was negatively associated with mean neighborhood income for both species in 2015. Although earlier work has shown a positive association between block-level abandonment and mosquito abundance, no association was detected in this study. Still, we demonstrate that viral infection in mosquito pools can differ substantially across adjacent urban neighborhoods that vary by income. Though trap security and accessibility often inform city sampling locations, detecting and managing arboviral risk requires surveillance across neighborhoods that vary in socioeconomics, including lower income areas that may be less accessible and secure but have higher infection rates.  more » « less
Award ID(s):
1824807 1855277
PAR ID:
10290535
Author(s) / Creator(s):
; ; ;
Editor(s):
Andreadis, Theodore
Date Published:
Journal Name:
Journal of Medical Entomology
Volume:
58
Issue:
3
ISSN:
0022-2585
Page Range / eLocation ID:
1424 to 1428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus. 
    more » « less
  2. The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying. 
    more » « less
  3. Lowen, Anice C (Ed.)
    ABSTRACT West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted byCulex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, inCulexcells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and twoCulexspecies with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk. 
    more » « less
  4. Abstract MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate gene expression during important biological processes including development and pathogen defense in most living organisms. Presently, no miRNAs have been identified in the mosquito Culex tarsalis (Diptera: Culicidae), one of the most important vectors of West Nile virus (WNV) in North America. We used small RNA sequencing data and in vitro and in vivo experiments to identify and validate a repertoire of miRNAs in Cx. tarsalis mosquitoes. Using bioinformatic approaches we analyzed small RNA sequences from the Cx. tarsalis CT embryonic cell line to discover orthologs for 86 miRNAs. Consistent with other mosquitoes such as Aedes albopictus and Culex quinquefasciatus, miR-184 was found to be the most abundant miRNA in Cx. tarsalis. We also identified 20 novel miRNAs from the recently sequenced Cx. tarsalis genome, for a total of 106 miRNAs identified in this study. The presence of selected miRNAs was biologically validated in both the CT cell line and in adult Cx. tarsalis mosquitoes using RT–qPCR and sequencing. These results will open new avenues of research into the role of miRNAs in Cx. tarsalis biology, including development, metabolism, immunity, and pathogen infection. 
    more » « less
  5. Yee, Donald (Ed.)
    Abstract Container Aedes mosquitoes are the most important vectors of human arboviruses (i.e., dengue, chikungunya, Zika, or yellow fever). Invasive and native container Aedes spp. potentially utilize natural and artificial containers in specific environments for oviposition. Several container Aedes spp. display ‘skip-oviposition’ behavior, which describes the distribution of eggs among multiple containers during a single gonotrophic cycle. In this study, we compared individual skip-oviposition behavior using identical eight-cup testing arenas with three container Aedes species: Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say). We applied the index of dispersion, an aggregation statistic, to individual mosquitoes’ oviposition patterns to assess skip-oviposition behavior. Aedes aegypti and Ae. albopictus utilized more cups and distributed eggs more evenly among cups than Ae. triseriatus under nutritionally enriched oviposition media (oak leaf infusion) conditions. When presented with a nutritionally unenriched (tap water) oviposition media, both Ae. aegypti and Ae. albopictus increased egg spreading behavior. Aedes albopictus did not modify skip-oviposition behavior when reared and assessed under fall-like environmental conditions, which induce diapause egg production. This study indicates specific oviposition site conditions influence skip-oviposition behavior with ‘preferred’ sites receiving higher amounts of eggs from any given individual and ‘non-preferred’ sites receive a limited contribution of eggs. A further understanding of skip-oviposition behavior is needed to make the best use of autodissemination trap technology in which skip-ovipositing females spread a potent larvicide among oviposition sites within the environment. 
    more » « less