skip to main content


Title: The SvFUL2 transcription factor is required for inflorescence determinacy and timely flowering in Setaria viridis
Abstract Inflorescence architecture in cereal crops directly impacts yield potential through regulation of seed number and harvesting ability. Extensive architectural diversity found in inflorescences of grass species is due to spatial and temporal activity and determinacy of meristems, which control the number and arrangement of branches and flowers, and underlie plasticity. Timing of the floral transition is also intimately associated with inflorescence development and architecture, yet little is known about the intersecting pathways and how they are rewired during development. Here, we show that a single mutation in a gene encoding an AP1/FUL-like MADS-box transcription factor significantly delays flowering time and disrupts multiple levels of meristem determinacy in panicles of the C4 model panicoid grass, Setaria viridis. Previous reports of AP1/FUL-like genes in cereals have revealed extensive functional redundancy, and in panicoid grasses, no associated inflorescence phenotypes have been described. In S. viridis, perturbation of SvFul2, both through chemical mutagenesis and gene editing, converted a normally determinate inflorescence habit to an indeterminate one, and also repressed determinacy in axillary branch and floral meristems. Our analysis of gene networks connected to disruption of SvFul2 identified regulatory hubs at the intersection of floral transition and inflorescence determinacy, providing insights into the optimization of cereal crop architecture.  more » « less
Award ID(s):
1733606
NSF-PAR ID:
10290603
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Plant Physiology
ISSN:
0032-0889
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Directional transport of auxin is critical for inflorescence and floral development in flowering plants, but the role of auxin influx carriers (AUX1 proteins) has been largely overlooked. Taking advantage of available AUX1 mutants in green millet (Setaria viridis) and maize (Zea mays), we uncover previously unreported aspects of plant development that are affected by auxin influx, including higher order branches in the inflorescence, stigma branch number, glume (floral bract) development, and plant fertility. However, disruption of auxin flux does not affect all parts of the plant, with little obvious effect on inflorescence meristem size, time to flowering, and anther morphology. In double mutant studies in maize, disruptions of ZmAUX1 also affect vegetative development. A green fluorescent protein (GFP)-tagged construct of the Setaria AUX1 protein Sparse Panicle1 (SPP1) under its native promoter showed that SPP1 localizes to the plasma membrane of outer tissue layers in both roots and inflorescences, and accumulates specifically in inflorescence branch meristems, consistent with the mutant phenotype and expected auxin maxima. RNA-seq analysis indicated that most gene expression modules are conserved between mutant and wild-type plants, with only a few hundred genes differentially expressed in spp1 inflorescences. Using clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 technology, we disrupted SPP1 and the other four AUX1 homologs in S. viridis. SPP1 has a larger effect on inflorescence development than the others, although all contribute to plant height, tiller formation, and leaf and root development. The AUX1 importers are thus not fully redundant in S. viridis. Our detailed phenotypic characterization plus a stable GFP-tagged line offer tools for future dissection of the function of auxin influx proteins. 
    more » « less
  2. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 ( GT1 ) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 ( ra3 ). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1 ; ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1 -like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form. 
    more » « less
  3. Abstract

    Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.

     
    more » « less
  4. null (Ed.)
    Globally, most human caloric intake is from crops that belong to the grass family (Poaceae), including sugarcane (Saccharum spp.), rice (Oryza sativa), maize (or corn, Zea mays), and wheat (Triticum aestivum). The grasses have a unique morphology and inflorescence architecture, and some have also evolved an uncommon photosynthesis pathway that confers drought and heat tolerance, the C4 pathway. Most secondary-level students are unaware of the global value of these crops and are unfamiliar with plant science fundamentals such as grass architecture and the genetic concepts of genotype and phenotype. Green foxtail millet (Setaria viridis) is a model organism for C4 plants and a close relative of globally important grasses, including sugarcane. It is ideal for teaching about grass morphology, the economic value of grasses, and the C4 photosynthetic pathway. This article details a teaching module that uses S. viridis to engage entire classrooms of students in authentic research through a laboratory investigation of grass morphology, growth cycle, and genetics. This module includes protocols and assignments to guide students through the process of growing one generation of S. viridis mutants and reference wild-type plants from seed to seed, taking measurements, making critical observations of mutant phenotypes, and discussing their physiological implications. 
    more » « less
  5. Abstract

    Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the underlying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review focuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory modules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by conserved auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflorescence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modified within individual species, particularly as regards formation of secondary branches. Differences between species are caused both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks described here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.

     
    more » « less