Abstract Species living in changing environments require the acclimatization of individual organisms, which may be significantly influenced by allele specific expression (ASE). Data from RNA-seq experiments can be used to identify and quantify the expressed alleles. However, conventional allele matching to the reference genome creates a mapping bias towards the reference allele that prevents a reliable estimation of the allele counts. We developed a pipeline that allows identification and unbiased quantification of the alleles corresponding to an RNA-seq dataset, without any previous knowledge of the haplotype. To achieve the unbiased mapping, we generate two pseudogenomes by substituting the alternative alleles on the reference genome. The SNPs are further called against each pseudogenome, providing two SNP data-sets that are averaged for calculation of the allele depth to be merged in a final SNP calling file. The pipeline presented here can calculate ASE in non-model organisms and can be applied to previous RNA-seq data-sets for expanding studies in gene expression regulation.
more »
« less
Genes of the pig, Sus scrofa , reconstructed with EvidentialGene
The pig is a well-studied model animal of biomedical and agricultural importance. Genes of this species, Sus scrofa , are known from experiments and predictions, and collected at the NCBI reference sequence database section. Gene reconstruction from transcribed gene evidence of RNA-seq now can accurately and completely reproduce the biological gene sets of animals and plants. Such a gene set for the pig is reported here, including human orthologs missing from current NCBI and Ensembl reference pig gene sets, additional alternate transcripts, and other improvements. Methodology for accurate and complete gene set reconstruction from RNA is used: the automated SRA2Genes pipeline of EvidentialGene project.
more »
« less
- Award ID(s):
- 1759906
- PAR ID:
- 10290726
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 7
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e6374
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gene set enrichment analysis (GSEA) plays an important role in large-scale data analysis, helping scientists discover the underlying biological patterns over-represented in a gene list resulting from, for example, an ‘omics’ study. Gene Ontology (GO) annotation is the most frequently used classification mechanism for gene set definition. Here we present a new GSEA tool, PANGEA (PAthway, Network and Gene-set Enrichment Analysis; https://www.flyrnai.org/tools/pangea/), developed to allow a more flexible and configurable approach to data analysis using a variety of classification sets. PANGEA allows GO analysis to be performed on different sets of GO annotations, for example excluding high-throughput studies. Beyond GO, gene sets for pathway annotation and protein complex data from various resources as well as expression and disease annotation from the Alliance of Genome Resources (Alliance). In addition, visualizations of results are enhanced by providing an option to view network of gene set to gene relationships. The tool also allows comparison of multiple input gene lists and accompanying visualisation tools for quick and easy comparison. This new tool will facilitate GSEA for Drosophila and other major model organisms based on high-quality annotated information available for these species.more » « less
-
Abstract Identifying genes that interact to confer a biological function to an organism is one of the main goals of functional genomics. High‐throughput technologies for assessment and quantification of genome‐wide gene expression patterns have enabled systems‐level analyses to infer pathways or networks of genes involved in different functions under many different conditions. Here, we leveraged the publicly available, information‐rich RNA‐Seq datasets of the model plantArabidopsis thalianato construct a gene co‐expression network, which was partitioned into clusters or modules that harbor genes correlated by expression. Gene ontology and pathway enrichment analyses were performed to assess functional terms and pathways that were enriched within the different gene modules. By interrogating the co‐expression network for genes in different modules that associate with a gene of interest, diverse functional roles of the gene can be deciphered. By mapping genes differentially expressing under a certain condition inArabidopsisonto the co‐expression network, we demonstrate the ability of the network to uncover novel genes that are likely transcriptionally active but prone to be missed by standard statistical approaches due to their falling outside of the confidence zone of detection. To our knowledge, this is the firstA. thalianaco‐expression network constructed using the entire mRNA‐Seq datasets (>20,000) available at the NCBI SRA database. The developed network can serve as a useful resource for theArabidopsisresearch community to interrogate specific genes of interest within the network, retrieve the respective interactomes, decipher gene modules that are transcriptionally altered under certain condition or stage, and gain understanding of gene functions.more » « less
-
Kim, J (Ed.)Abstract Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/.more » « less
-
Abstract We present Bisque, a tool for estimating cell type proportions in bulk expression. Bisque implements a regression-based approach that utilizes single-cell RNA-seq (scRNA-seq) or single-nucleus RNA-seq (snRNA-seq) data to generate a reference expression profile and learn gene-specific bulk expression transformations to robustly decompose RNA-seq data. These transformations significantly improve decomposition performance compared to existing methods when there is significant technical variation in the generation of the reference profile and observed bulk expression. Importantly, compared to existing methods, our approach is extremely efficient, making it suitable for the analysis of large genomic datasets that are becoming ubiquitous. When applied to subcutaneous adipose and dorsolateral prefrontal cortex expression datasets with both bulk RNA-seq and snRNA-seq data, Bisque replicates previously reported associations between cell type proportions and measured phenotypes across abundant and rare cell types. We further propose an additional mode of operation that merely requires a set of known marker genes.more » « less
An official website of the United States government

