skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Knowledge Tracing using Temporal Convolutional Networks
The knowledge tracing (KT) task consists of predicting students’ future performance on instructional activities given their past performance. Recently, deep learning models used to solve this task yielded relative excellent prediction results relative to prior approaches. Despite this success, the majority of these models ignore relevant information that can be used to enhance the knowledge tracing performance. To overcome these limitations, we propose a generic framework that also accounts for the engagement level of students, the difficulty level of the instructional activities, and the natural language processing embeddings of the text of each concept. Furthermore, to capture the fact that students’ knowledge states evolve over time we employ a LSTM-based model. Then, we pass such sequences of knowledge states to a Temporal Convolutional Network to predict future performance. Several empirical experiments have been conducted to evaluate the effectiveness of our proposed framework for KT using Cognitive Tutor datasets. Experimental results showed the superior performance of our proposed model over many existing deep KT models. And AUC of 96.57% has been achieved on the Algebra 2006-2007 dataset.  more » « less
Award ID(s):
1822816
PAR ID:
10290861
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Workshop Artificial Intelligence for Education (IJCAI 2021))
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Knowledge Tracing (KT) focuses on quantifying student knowledge according to the student's past performance. While KT models focus on modeling student knowledge, they miss the behavioral aspect of learning, such as the types of learning materials that the students choose to learn from. This is mainly because traditional knowledge tracing (KT) models only consider assessed activities, like solving questions. Recently, there has been a growing interest in multi-type KT which considers both assessed and non-assessed activities (like video lectures). Since multi-type KT models include different learning material types, they present a new opportunity to investigate student behavior, as in the choice of the learning material type, along with student knowledge. We argue that student knowledge can affect their behavior, and student interest in learning materials may affect their knowledge. In this paper, we model the relationship between students' knowledge states and their choice of learning activities. To this end, we propose Pareto-TAMKOT which frames the simultaneous learning of student knowledge and behavior as a multi-task learning problem. It employs a transition-aware multi-activity KT method for two objectives: modeling student knowledge and student behavior. Pareto-TAMKOT uses the Pareto Multi-task learning algorithm (Pareto MTL) to solve this multi-objective optimization problem. We evaluate Pareto-TAMKOT on one real-world dataset, demonstrating the benefit of approaching student knowledge and behavior modeling as a multi-task learning problem. 
    more » « less
  2. Accurate modeling of student knowledge is essential for large-scale online learning systems that are increasingly used for student training. Knowledge tracing aims to model student knowledge state given the student's sequence of learning activities. Modern Knowledge tracing (KT) is usually formulated as a supervised sequence learning problem to predict students' future practice performance according to their past observed practice scores by summarizing student knowledge state as a set of evolving hidden variables. Because of this formulation, many current KT solutions are not fit for modeling student learning from non-assessed learning activities with no explicit feedback or score observation (e.g., watching video lectures that are not graded). Additionally, these models cannot explicitly represent the dynamics of knowledge transfer among different learning activities, particularly between the assessed (e.g., quizzes) and non-assessed (e.g., video lectures) learning activities. In this paper, we propose Transition-Aware Multi-activity Knowledge Tracing (TAMKOT), which models knowledge transfer between learning materials, in addition to student knowledge, when students transition between and within assessed and non-assessed learning materials. TAMKOT is formulated as a deep recurrent multi-activity learning model that explicitly learns knowledge transfer by activating and learning a set of knowledge transfer matrices, one for each transition type between student activities. Accordingly, our model allows for representing each material type in a different yet transferrable latent space while maintaining student knowledge in a shared space. We evaluate our model on three real-world publicly available datasets and demonstrate TAMKOT's capability in predicting student performance and modeling knowledge transfer. 
    more » « less
  3. null (Ed.)
    Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, and some attempts can be summarized together to better represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering complex latent concepts in the problems. 
    more » « less
  4. Knowledge tracing (KT) refers to the problem of predicting future learner performance given their past performance in educational applications. Recent developments in KT using flexible deep neural network-based models excel at this task. However, these models often offer limited interpretability, thus making them insufficient for personalized learning, which requires using interpretable feedback and actionable recommendations to help learners achieve better learning outcomes. In this paper, we propose attentive knowledge tracing (AKT), which couples flexible attention-based neural network models with a series of novel, interpretable model components inspired by cognitive and psychometric models. AKT uses a novel monotonic attention mechanism that relates a learner’s future responses to assessment questions to their past responses; attention weights are computed using exponential decay and a context-aware relative distance measure, in addition to the similarity between questions. Moreover, we use the Rasch model to regularize the concept and question embeddings; these embeddings are able to capture individual differences among questions on the same concept without using an excessive number of parameters. We conduct experiments on several real-world benchmark datasets and show that AKT outperforms existing KT methods (by up to 6% in AUC in some cases) on predicting future learner responses. We also conduct several case studies and show that AKT exhibits excellent interpretability and thus has potential for automated feedback and personalization in real-world educational settings. 
    more » « less
  5. null (Ed.)
    The state of the art knowledge tracing approaches mostly model student knowledge using their performance in assessed learning resource types, such as quizzes, assignments, and exercises, and ignore the non-assessed learning resources. However, many student activities are non-assessed, such as watching video lectures, participating in a discussion forum, and reading a section of a textbook, all of which potentially contributing to the students' knowledge growth. In this paper, we propose the  first novel deep learning based knowledge tracing model (DMKT) that explicitly model student's knowledge transitions over both assessed and non-assessed learning activities. With DMKT we can discover the underlying latent concepts of each non-assessed and assessed learning material and better predict the student performance in future assessed learning resources. We compare our proposed method with various state of the art knowledge tracing methods on four real-world datasets and show its effectiveness in predicting student performance, representing student knowledge, and discovering the underlying domain model. 
    more » « less