skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sublinear Time Hypergraph Sparsification via Cut and Edge Sampling Queries
The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczúr and Karger (1996) showed that given any n-vertex undirected weighted graph G and a parameter ε ∈ (0,1), there is a near-linear time algorithm that outputs a weighted subgraph G' of G of size Õ(n/ε²) such that the weight of every cut in G is preserved to within a (1 ± ε)-factor in G'. The graph G' is referred to as a (1 ± ε)-approximate cut sparsifier of G. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n, independent of the number of edges. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph. Specifically, we design an algorithm that constructs a (1 ± ε)-approximate cut sparsifier of a hypergraph H(V,E) in polynomial time in n, independent of the number of hyperedges, when given access to the hypergraph using the following two queries: 1) given any cut (S, ̄S), return the size |δ_E(S)| (cut value queries); and 2) given any cut (S, ̄S), return a uniformly at random edge crossing the cut (cut edge sample queries). Our algorithm outputs a sparsifier with Õ(n/ε²) edges, which is essentially optimal. We then extend our results to show that cut value and cut edge sample queries can also be used to construct hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges. We complement the algorithmic results above by showing that any algorithm that has access to only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge sample queries with a pair neighbor sample query that for any pair of vertices, returns a random edge incident on them. In contrast, we show that having access only to cut value queries and queries that return a random edge incident on a given single vertex, is not sufficient.  more » « less
Award ID(s):
2008305 1934876 1617851 1763514
PAR ID:
10290894
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
48th International Colloquium on Automata, Languages, and Programming
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs. 
    more » « less
  2. Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs. 
    more » « less
  3. Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs. 
    more » « less
  4. A $$(1\pm\epsilon)$$ -sparsifier of a hypergraph $G(V, E)$ is a (weighted) subgraph that preserves the value of every cut to within a $$(1\pm\epsilon)$$ -factor. It is known that every hypergraph with $$n$$ vertices admits a $$(1 \pm \epsilon)$$ -sparsifier with $$\tilde{O}(n/{\epsilon}^{2})$$ hyperedges. In this work, we explore the task of building such a sparsifier by using only linear measurements (a linear sketch) over the hyperedges of $$G$$, and provide nearly-matching upper and lower bounds for this task. Specifically, we show that there is a randomized linear sketch of size $$\tilde{O}(nr\log(m)/\epsilon^{2})$$ bits which with high probability contains sufficient information to recover a $$(1\pm\epsilon)$$ cut-sparsifier with $$\tilde{O}(n/\epsilon^{2})$$ hyperedges for any hypergraph with at most $$m$$ edges each of which has arity bounded by $$r$$. This immediately gives a dynamic streaming algorithm for hypergraph cut sparsification with an identical space complexity, improving on the previous best known bound of $$\tilde{O}(nr^{2}\log^{4}({m})/\epsilon^{2})$$ bits of space (Guha, McGregor, and Tench, PODS 2015). We complement our algorithmic result above with a nearly-matching lower bound. We show that for every $$\epsilon\in(0,1)$$, one needs $$\Omega(nr\log(m/n)/\log(n))$$ bits to construct a $$(1\pm\epsilon)$$ -sparsifier via linear sketching, thus showing that our linear sketch achieves an optimal dependence on both $$r$$ and $$\log(m)$$. The starting point for our improved algorithm is importance sampling of hyperedges based on the new notion of $$k$$ -cut strength introduced in the recent work of Quanrud (SODA 2024). The natural algorithm based on this concept leads to $$\log m$$ levels of sampling where errors can potentially accumulate, and this accounts for the polylog $(m)$ losses in the sketch size of the natural algorithm. We develop a more intricate analysis of the accumulation in error to show most levels do not contribute to the error and actual loss is only polylog $(n)$. Combining with careful preprocessing (and analysis) this enables us to get rid of all extraneous $$\log m$$ factors in the sketch size, but the quadratic dependence on $$r$$ remains. This dependence originates from use of correlated $$\ell_{0}$$ -samplers to recover a large number of low-strength edges in a hypergraph simultaneously by looking at neighborhoods of individual vertices. In graphs, this leads to discovery of $$\Omega(n)$$ edges in a single shot, whereas in hypergraphs, this may potentially only reveal $$O$$($$n$$/$$r$$) new edges, thus requiring $$\Omega(r)$$ rounds of recovery. To remedy this we introduce a new technique of random fingerprinting of hyperedges which effectively eliminates the correlations created by large arity hyperedges, and leads to a scheme for recovering hyperedges of low strength with an optimal dependence on $$r$$. Putting all these ingredients together yields our linear sketching algorithm. Our lower bound is established by a reduction from the universal relation problem in the one-way communication setting. 
    more » « less
  5. A $$(1\pm\epsilon)$$ -sparsifier of a hypergraph $G(V, E)$ is a (weighted) subgraph that preserves the value of every cut to within a $$(1\pm\epsilon)$$ -factor. It is known that every hypergraph with $$n$$ vertices admits a $$(1 \pm \epsilon)$$ -sparsifier with $$\tilde{O}(n/{\epsilon}^{2})$$ hyperedges. In this work, we explore the task of building such a sparsifier by using only linear measurements (a linear sketch) over the hyperedges of $$G$$, and provide nearly-matching upper and lower bounds for this task. Specifically, we show that there is a randomized linear sketch of size $$\tilde{O}(nr\log(m)/\epsilon^{2})$$ bits which with high probability contains sufficient information to recover a $$(1\pm\epsilon)$$ cut-sparsifier with $$\tilde{O}(n/\epsilon^{2})$$ hyperedges for any hypergraph with at most $$m$$ edges each of which has arity bounded by $$r$$. This immediately gives a dynamic streaming algorithm for hypergraph cut sparsification with an identical space complexity, improving on the previous best known bound of $$\tilde{O}(nr^{2}\log^{4}({m})/\epsilon^{2})$$ bits of space (Guha, McGregor, and Tench, PODS 2015). We complement our algorithmic result above with a nearly-matching lower bound. We show that for every $$\epsilon\in(0,1)$$, one needs $$\Omega(nr\log(m/n)/\log(n))$$ bits to construct a $$(1\pm\epsilon)$$ -sparsifier via linear sketching, thus showing that our linear sketch achieves an optimal dependence on both $$r$$ and $$\log(m)$$. The starting point for our improved algorithm is importance sampling of hyperedges based on the new notion of $$k$$ -cut strength introduced in the recent work of Quanrud (SODA 2024). The natural algorithm based on this concept leads to $$\log m$$ levels of sampling where errors can potentially accumulate, and this accounts for the polylog $(m)$ losses in the sketch size of the natural algorithm. We develop a more intricate analysis of the accumulation in error to show most levels do not contribute to the error and actual loss is only polylog $(n)$. Combining with careful preprocessing (and analysis) this enables us to get rid of all extraneous $$\log m$$ factors in the sketch size, but the quadratic dependence on $$r$$ remains. This dependence originates from use of correlated $$\ell_{0}$$ -samplers to recover a large number of low-strength edges in a hypergraph simultaneously by looking at neighborhoods of individual vertices. In graphs, this leads to discovery of $$\Omega(n)$$ edges in a single shot, whereas in hypergraphs, this may potentially only reveal $$O$$($$n$$/$$r$$) new edges, thus requiring $$\Omega(r)$$ rounds of recovery. To remedy this we introduce a new technique of random fingerprinting of hyperedges which effectively eliminates the correlations created by large arity hyperedges, and leads to a scheme for recovering hyperedges of low strength with an optimal dependence on $$r$$. Putting all these ingredients together yields our linear sketching algorithm. Our lower bound is established by a reduction from the universal relation problem in the one-way communication setting. 
    more » « less