PurposeThis study aims to evaluate a method of building a biomedical knowledge graph (KG). Design/methodology/approachThis research first constructs a COVID-19 KG on the COVID-19 Open Research Data Set, covering information over six categories (i.e. disease, drug, gene, species, therapy and symptom). The construction used open-source tools to extract entities, relations and triples. Then, the COVID-19 KG is evaluated on three data-quality dimensions: correctness, relatedness and comprehensiveness, using a semiautomatic approach. Finally, this study assesses the application of the KG by building a question answering (Q&A) system. Five queries regarding COVID-19 genomes, symptoms, transmissions and therapeutics were submitted to the system and the results were analyzed. FindingsWith current extraction tools, the quality of the KG is moderate and difficult to improve, unless more efforts are made to improve the tools for entity extraction, relation extraction and others. This study finds that comprehensiveness and relatedness positively correlate with the data size. Furthermore, the results indicate the performances of the Q&A systems built on the larger-scale KGs are better than the smaller ones for most queries, proving the importance of relatedness and comprehensiveness to ensure the usefulness of the KG. Originality/valueThe KG construction process, data-quality-based and application-based evaluations discussed in this paper provide valuable references for KG researchers and practitioners to build high-quality domain-specific knowledge discovery systems.
more »
« less
TeX-Graph: Coupled tensor-matrix knowledge-graph embedding for COVID-19 drug repurposing
Knowledge graphs (KGs) are powerful tools that codify relational behaviour between entities in knowledge bases. KGs can simultaneously model many different types of subject-predicate-object and higher-order relations. As such, they offer a flexible modeling framework that has been applied to many areas, including biology and pharmacology – most recently, in the fight against COVID-19. The flexibility of KG modeling is both a blessing and a challenge from the learning point of view. In this paper we propose a novel coupled tensor-matrix framework for KG embedding. We leverage tensor factorization tools to learn concise representations of entities and relations in knowledge bases and employ these representations to perform drug repurposing for COVID-19. Our proposed framework is principled, elegant, and achieves 100% improvement over the best baseline in the COVID-19 drug repurposing task using a recently developed biological KG.
more »
« less
- Award ID(s):
- 1908070
- PAR ID:
- 10290912
- Date Published:
- Journal Name:
- SIAM International Conference on Data Mining (SDM) 2021, April 29 – May 1, 2021.
- Page Range / eLocation ID:
- 603 - 611
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To address the rapid growth of scientific publications and data in biomedical research, knowledge graphs (KGs) have become a critical tool for integrating large volumes of heterogeneous data to enable efficient information retrieval and automated knowledge discovery. However, transforming unstructured scientific literature into KGs remains a significant challenge, with previous methods unable to achieve human-level accuracy. Here we used an information extraction pipeline that won first place in the LitCoin Natural Language Processing Challenge (2022) to construct a large-scale KG named iKraph using all PubMed abstracts. The extracted information matches human expert annotations and significantly exceeds the content of manually curated public databases. To enhance the KG’s comprehensiveness, we integrated relation data from 40 public databases and relation information inferred from high-throughput genomics data. This KG facilitates rigorous performance evaluation of automated knowledge discovery, which was infeasible in previous studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal relations and applied it to real-time COVID-19 drug repurposing from March 2020 to May 2023. Our method identified around 1,200 candidate drugs in the first 4 months, with one-third of those discovered in the first 2 months later supported by clinical trials or PubMed publications. These outcomes are very challenging to attain through alternative approaches that lack a thorough understanding of the existing literature. A cloud-based platform (https://biokde.insilicom.com) was developed for academic users to access this rich structured data and associated tools.more » « less
-
Knowledge graphs (KGs) are of great importance in various artificial intelligence systems, such as question answering, relation extraction, and recommendation. Nevertheless, most real-world KGs are highly incomplete, with many missing relations between entities. To discover new triples (i.e., head entity, relation, tail entity), many KG completion algorithms have been proposed in recent years. However, a vast majority of existing studies often require a large number of training triples for each relation, which contradicts the fact that the frequency distribution of relations in KGs often follows a long tail distribution, meaning a majority of relations have only very few triples. Meanwhile, since most existing large-scale KGs are constructed automatically by extracting information from crowd-sourcing data using heuristic algorithms, plenty of errors could be inevitably incorporated due to the lack of human verification, which greatly reduces the performance for KG completion. To tackle the aforementioned issues, in this paper, we study a novel problem of error-aware few-shot KG completion and present a principled KG completion framework REFORM. Specifically, we formulate the problem under the few-shot learning framework, and our goal is to accumulate meta-knowledge across different meta-tasks and generalize the accumulated knowledge to the meta-test task for error-aware few-shot KG completion. To address the associated challenges resulting from insufficient training samples and inevitable errors, we propose three essential modules neighbor encoder, cross-relation aggregation, and error mitigation in each meta-task. Extensive experiments on three widely used KG datasets demonstrate the superiority of the proposed framework REFORM over competitive baseline methods.more » « less
-
This study builds a coronavirus knowledge graph (KG) by merging two information sources. The first source is Analytical Graph (AG), which integrates more than 20 different public datasets related to drug discovery. The second source is CORD-19, a collection of published scientific articles related to COVID-19. We combined both chemo genomic entities in AG with entities extracted from CORD-19 to expand knowledge in the COVID-19 domain. Before populating KG with those entities, we perform entity disambiguation on CORD-19 collections using Wikidata. Our newly built KG contains at least 21,700 genes, 2500 diseases, 94,000 phenotypes, and other biological entities (e.g., compound, species, and cell lines). We define 27 relationship types and use them to label each edge in our KG. This research presents two cases to evaluate the KG’s usability: analyzing a subgraph (ego-centered network) from the angiotensin-converting enzyme (ACE) and revealing paths between biological entities (hydroxychloroquine and IL-6 receptor; chloroquine and STAT1). The ego-centered network captured information related to COVID-19. We also found significant COVID-19-related information in top-ranked paths with a depth of three based on our path evaluation.more » « less
-
Biomedical knowledge graphs (KGs) encode rich, structured information critical for drug discovery tasks, but extracting meaningful insights from large-scale KGs remains challenging due to their complex structure. Existing biomedical subgraph retrieval methods are tailored for graph neural networks (GNNs), limiting compatibility with other paradigms, including large language models (LLMs). We introduce K-Paths, a model-agnostic retrieval framework that extracts structured, diverse, and biologically meaningful multi-hop paths from dense biomedical KGs. These paths enable prediction of unobserved drug-drug and drug-disease interactions, including those involving entities not seen during training, thus supporting inductive reasoning. K-Paths is training-free and employs a diversity-aware adaptation of Yen's algorithm to extract the K shortest loopless paths between entities in a query, prioritizing biologically relevant and relationally diverse connections. These paths serve as concise, interpretable reasoning chains that can be directly integrated with LLMs or GNNs to improve generalization, accuracy, and enable explainable inference. Experiments on benchmark datasets show that K-Paths improves zero-shot reasoning across state-of-the-art LLMs. For instance, Tx-Gemma 27B improves by 19.8 and 4.0 F1 points on interaction severity prediction and drug repurposing tasks, respectively. Llama 70B achieves gains of 8.5 and 6.2 points on the same tasks. K-Paths also boosts the training efficiency of EmerGNN, a state-of-the-art GNN, by reducing the KG size by 90% while maintaining predictive performance. Beyond efficiency, K-Paths bridges the gap between KGs and LLMs, enabling scalable and explainable LLM-augmented scientific discovery. We release our code and the retrieved paths as a benchmark for inductive reasoning.more » « less
An official website of the United States government

