- Award ID(s):
- 2037164
- PAR ID:
- 10290917
- Date Published:
- Journal Name:
- Advanced Healthcare Materials
- ISSN:
- 2192-2640
- Page Range / eLocation ID:
- 2001916
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.more » « less
-
Abstract Conjugated polymers are emerging as promising building blocks for a broad range of modern applications including skin‐like electronics, wearable optoelectronics, and sensory technologies. In the past three decades, the optical and electronic properties of conjugated polymers have been extensively studied, while their thermomechanical properties, especially the glass transition phenomenon which fundamentally represents the polymer chain dynamics, have received much less attention. Currently, there is a lack of design rules that underpin the glass transition temperature of these semirigid conjugated polymers, putting a constraint on the rational polymer design for flexible stretchable devices and stable polymer glass that is needed for the devices’ long‐term morphology stability. In this review article, the glass transition phenomenon for polymers, glass transition theories, and characterization techniques are first discussed. Then previous studies on the glass transition phenomenon of conjugated polymers are reviewed and a few empirical design rules are proposed to fine‐tune the glass transition temperature for conjugated polymers. The review paper is finished with perspectives on future directions on studying the glass transition phenomena of conjugated polymers. The goal of this perspective is to draw attention to challenges and opportunities of controlling, predicting, and designing polymeric semiconductors, specifically to accommodate their end use.
-
Abstract Progress in implanted bioelectronic technology offers the opportunity to develop more effective tools for personalized electronic medicine. While there are numerous clinical and pre‐clinical applications for these devices, power delivery to these systems can be challenging. Wireless battery‐free devices offer advantages such as a smaller and lighter device footprint and reduced failures and infections by eliminating lead wires. However, with the development of wireless technologies, there are fundamental tradeoffs between five essential factors: power, miniaturization, depth, alignment tolerance, and transmitter distance, while still allowing devices to work within safety limits. These tradeoffs mean that multiple forms of wireless power transfer are necessary for different devices to best meet the needs for a given biological target. Here six different types of wireless power transfer technologies used in bioelectronic implants—inductive coupling, radio frequency, mid‐field, ultrasound, magnetoelectrics, and light—are reviewed in context of the five tradeoffs listed above. This core group of wireless power modalities is then used to suggest possible future bioelectronic technologies and their biological applications.
-
Abstract Bioelectronic devices sense or deliver information at the interface between living systems and electronics by converting biological signals into electronic signals and vice‐versa. Biological signals are typically carried by ions and small molecules. As such, ion conducting materials are ideal candidates in bioelectronics for an optimal interface. Among these materials, ion conducting polymers that are able to uptake water are particularly interesting because, in addition to ionic conductivity, their mechanical properties can closely match the ones of living tissue. In this review, we focus on a specific subset of ion‐conducting polymers: proton (H+) conductors that are naturally derived. We first provide a brief introduction of the proton conduction mechanism, and then outline the chemical structure and properties of representative proton‐conducting natural biopolymers: polysaccharides (chitosan and glycosaminoglycans), peptides and proteins, and melanin. We then highlight examples of using these biopolymers in bioelectronic devices. We conclude with current challenges and future prospects for broader use of natural biopolymers as proton conductors in bioelectronics and potential translational applications.
-
Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.more » « less