Abstract Machine learning interatomic potentials (MLIPs) are a promising technique for atomic modeling. While small errors are widely reported for MLIPs, an open concern is whether MLIPs can accurately reproduce atomistic dynamics and related physical properties in molecular dynamics (MD) simulations. In this study, we examine the state-of-the-art MLIPs and uncover several discrepancies related to atom dynamics, defects, and rare events (REs), compared to ab initio methods. We find that low averaged errors by current MLIP testing are insufficient, and develop quantitative metrics that better indicate the accurate prediction of atomic dynamics by MLIPs. The MLIPs optimized by the RE-based evaluation metrics are demonstrated to have improved prediction in multiple properties. The identified errors, the evaluation metrics, and the proposed process of developing such metrics are general to MLIPs, thus providing valuable guidance for future testing and improvements of accurate and reliable MLIPs for atomistic modeling.
more »
« less
Exploring the necessary complexity of interatomic potentials.
The application of machine learning models and algorithms towards describing atomic interactions has been a major area of interest in materials simulations in recent years, as machine learning interatomic potentials (MLIPs) are seen as being more flexible and accurate than their classical potential counterparts. This increase in accuracy of MLIPs over classical potentials has come at the cost of significantly increased complexity, leading to higher computational costs and lower physical interpretability and spurring research into improving the speeds and interpretability of MLIPs. As an alternative, in this work we leverage “machine learning” fitting databases and advanced optimization algorithms to fit a class of spline-based classical potentials, showing that they can be systematically improved in order to achieve accuracies comparable to those of low-complexity MLIPs. These results demonstrate that high model complexities may not be strictly necessary in order to achieve near-DFT accuracy in interatomic potentials and suggest an alternative route towards sampling the high accuracy, low complexity region of model space by starting with forms that promote simpler and more interpretable inter- atomic potentials.
more »
« less
- Award ID(s):
- 1922758
- PAR ID:
- 10291010
- Date Published:
- Journal Name:
- Computational materials science
- Volume:
- 200
- Issue:
- 2021
- ISSN:
- 1879-0801
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Machine learning interatomic potential (MLIP) has been widely adopted for atomistic simulations. While errors and discrepancies for MLIPs have been reported, a comprehensive examination of the MLIPs’ performance over a broad spectrum of material properties has been lacking. This study introduces an analysis process comprising model sampling, benchmarking, error evaluations, and multi-dimensional statistical analyses on an ensemble of MLIPs for prediction errors over a diverse range of properties. By carrying out this analysis on 2300 MLIP models based on six different MLIP types, several properties that pose challenges for the MLIPs to achieve small errors are identified. The Pareto front analyses on two or more properties reveal the trade-offs in different properties of MLIPs, underscoring the difficulties of achieving low errors for a large number of properties simultaneously. Furthermore, we propose correlation graph analyses to characterize the error performances of MLIPs and to select the representative properties for predicting other property errors. This analysis process on a large dataset of MLIP models sheds light on the underlying complexities of MLIP performance, offering crucial guidance for the future development of MLIPs with improved predictive accuracy across an array of material properties.more » « less
-
Abstract We present machine‐learning interatomic potentials (MLIPs) for simulations of Si–C–O–H compounds. The MLIPs are constructed from moment tensor potentials (MTPs) and were trained to a library of configurations that included polysiloxane structures, hypothetical crystalline and amorphous SiCOH structures, and trajectories of Si–C–O–H systems obtained via ab initio molecular dynamic (aiMD) simulations at elevated temperatures. Passive, active, and hybrid learning strategies were implemented to develop the MLIPs. The MLIPs reproduce vibrational properties of polymers and SiCOH structures obtained from aiMD simulations, thus providing a tool to identify chemical units and distinct structural characteristics through their vibrational properties. Simulations of the polymer‐to‐ceramic transformation show the development of mixed tetrahedra in SiCO ceramics and align with experimental observations. Million‐atom simulations for several nanoseconds highlight the precipitation of graphitic nanosheets from a carbon‐rich SiCO precursor. Atomistic simulations with the MLIPs deliver details of chemical reaction mechanisms during the pyrolysis of polysiloxanes, including methane abstraction and Kumada‐like rearrangements that transform the siloxane backbone. While the MLIPs still leave room for systematic improvement, they deliver simulations with “density functional theory (DFT)‐like” quality at low and high temperatures.more » « less
-
Abstract Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations. Most DNN potentials were parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this work, we propose an improved machine learning framework for simulating open-shell anions and cations. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity with errors of about 2–3 kcal/mol and spin-charges with error errors ~0.01e for small and medium-sized organic molecules, compared to the reference QM simulations. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions.more » « less
-
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLIPs. This review paper covers a broad range of topics related to MLIPs, including (i) central aspects of how and why MLIPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLIPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLIPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLIPs, (iv) a practical guide for estimating and understanding the execution speed of MLIPs, including guidance for users based on hardware availability, type of MLIP used, and prospective simulation size and time, (v) a manual for what MLIP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLIP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLIPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLIPs over the next 3–10+ years.more » « less
An official website of the United States government

