skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Progressive Slice Recovery with Guaranteed Slice Connectivity after Massive Failures
Award ID(s):
1818972
PAR ID:
10291023
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEEACM transactions on networking
ISSN:
1558-2566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many probabilistic modeling problems in machine learning use gradient-based optimization in which the objective takes the form of an expectation. These problems can be challenging when the parameters to be optimized determine the probability distribution under which the expectation is being taken, as the na\"ive Monte Carlo procedure is not differentiable. Reparameterization gradients make it possible to efficiently perform optimization of these Monte Carlo objectives by transforming the expectation to be differentiable, but the approach is typically limited to distributions with simple forms and tractable normalization constants. Here we describe how to differentiate samples from slice sampling to compute \textit{slice sampling reparameterization gradients}, enabling a richer class of Monte Carlo objective functions to be optimized. Slice sampling is a Markov chain Monte Carlo algorithm for simulating samples from probability distributions; it only requires a density function that can be evaluated point-wise up to a normalization constant, making it applicable to a variety of inference problems and unnormalized models. Our approach is based on the observation that when the slice endpoints are known, the sampling path is a deterministic and differentiable function of the pseudo-random variables, since the algorithm is rejection-free. We evaluate the method on synthetic examples and apply it to a variety of applications with reparameterization of unnormalized probability distributions. 
    more » « less
  2. Kawauchi proved that every strongly negative amphichiral knot K in S^3 bounds a smoothly embedded disk in some rational homology ball V_K, whose construction a priori depends on K. We show that V_K is independent of K up to diffeomorphism. Thus, a single 4-manifold, along with connected sums thereof, accounts for all known examples of knots that are rationally slice but not slice. 
    more » « less