skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Power of Opaque Products in Pricing
We study the power of selling opaque products, that is, products where a feature (such as color) is hidden from the customer until after purchase. Opaque products, which are sold with a price discount, have emerged as a powerful vehicle to increase revenue for many online retailers and service providers that offer horizontally differentiated items. In the opaque selling models we consider, all of the items are sold at a single common price alongside opaque products that may correspond to various subsets of the items. We consider two types of customers, risk-neutral ones, who assume they will receive a truly random item of the opaque product, and pessimistic ones, who assume they will receive their least favorite item of the opaque product. We benchmark opaque selling against two common selling strategies: discriminatory pricing, where one explicitly charges different prices for each item, and single pricing, where a single price is charged for all the items. We give a sharp characterization of when opaque selling outperforms discriminatory pricing; namely, this result holds for situations where all customers are pessimistic or the item valuations are supported on two points. In the latter case, we also show that opaque selling with just one opaque product guarantees at least 71.9% of the revenue from discriminatory pricing. We then provide upper bounds on the potential revenue increase from opaque selling strategies over single pricing and describe cases where the increase can be significantly more than that of discriminatory pricing. Finally, we provide pricing algorithms and conduct an extensive numerical study to assess the power of opaque selling for a variety valuation distributions and model extensions. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.  more » « less
Award ID(s):
1944428
PAR ID:
10291031
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Management Science
Volume:
67
Issue:
8
ISSN:
0025-1909
Page Range / eLocation ID:
4686 to 4702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the online video game industry, a significant portion of the revenue is generated from microtransactions, where a small amount of real-world currency is exchanged for virtual items to be used in the game. One popular way to conduct microtransactions is via a loot box, which is a random allocation of virtual items whose contents are not revealed until after purchase. In this work, we consider how to optimally price and design loot boxes from the perspective of a revenue-maximizing video game company and analyze customer surplus under such selling strategies. Our paper provides the first formal treatment of loot boxes, with the aim to provide customers, companies, and regulatory bodies with insights into this popular selling strategy. We consider two types of loot boxes: a traditional one where customers can receive (unwanted) duplicates and a unique one where customers are guaranteed to never receive duplicates. We show that as the number of virtual items grows large, the unique box strategy is asymptotically optimal among all possible strategies, whereas the traditional box strategy only garners 36.7% of the optimal revenue. On the other hand, the unique box strategy leaves almost zero customer surplus, whereas the traditional box strategy leaves positive surplus. Further, when designing traditional and unique loot boxes, we show it is asymptotically optimal to allocate the items uniformly, even when the item valuation distributions are heterogeneous. We also show that, when the seller purposely misrepresents the allocation probabilities, their revenue may increase significantly, and thus, strict regulation is needed. Finally, we show that, even if the seller allows customers to salvage unwanted items, then the customer surplus can only increase by at most 1.4%. This paper was accepted by Victor Martinez-de-Albeniz, operations management. 
    more » « less
  2. Characterizing the Efficiency of Static Pricing Schemes as a Function of the Supply The problem of selling a supply of k units to a stream of customers constitutes one of the cornerstones in revenue management. Static pricing schemes (that output the same price to all customers) are commonly used because of their simplicity and their many desirable properties; they are anonymous, nonadaptive, and order oblivious. Although the efficiency of those schemes should improve as the supply k increases, prior work has only focused either on algorithms that aim for a constant approximation that is independent of k or on the setting where k becomes really large. In contrast, this paper characterizes the efficiency of static pricing schemes as a function of the supply. Our approach stems from identifying a “sweet spot” between selling enough items and obtaining enough utility from customers with high valuations. Subsequent work shows that our pricing scheme is the optimal static pricing for every value of k. 
    more » « less
  3. Online pricing has been the focus of extensive research in recent years, particularly in the context of selling an item to sequentially arriving users. However, what if a provider wants to maximize revenue by selling multiple items to multiple users in each round? This presents a complex problem, as the provider must intelligently offer the items to those users who value them the most without exceeding their highest acceptable prices. In this study, we tackle this challenge by designing online algorithms that can efficiently offer and price items while learning user valuations from accept/reject feedback. We focus on three user valuation models (fixed valuations, random experiences, and random valuations) and provide algorithms with nearly-optimal revenue regret guarantees. In particular, for any market setting with N users, M items, and load L (which roughly corresponds to the maximum number of simultaneous allocations possible), our algorithms achieve regret of order O(NMloglog(LT)) under fixed valuations model, O(√NMLT) under random experiences model and O(√NMLT) under random valuations model in T rounds. 
    more » « less
  4. We study the revenue guarantees and approximability of item pricing. Recent work shows that with n heterogeneous items, item-pricing guarantees an O(logn) approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging – it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than O(√n). Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item “categories” which may be significantly fewer than n. We assume the items are partitioned in k categories so that items within a category are totally-ordered and a buyer’s value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an O(logk) approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when k is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when k=1. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable. 
    more » « less
  5. In the context of subscription-based services, many technologies improve over time, and service providers can provide increasingly powerful service upgrades to their customers but at a launching cost and the expense of the sales of existing products. We propose a model of technology upgrades and characterize the optimal pricing and timing of technology introductions for a service provider who price-discriminates among customers based on their upgrade experience in the face of customers who are averse to switching to improved offerings. We first characterize optimal discriminatory pricing for the infinite horizon pricing problem with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization problem and propose an efficient algorithm for solving it. Our algorithm computes optimal discriminatory prices within a fraction of a second even for large problem instances. We then show that periodic introduction times, combined with optimal pricing, enjoy optimality guarantees. In particular, we first show that, as long as the introduction intervals are constrained to be nonincreasing, it is optimal to have periodic introductions after an initial warm-up phase. When allowing general introduction intervals, we show that periodic introduction intervals after some time are optimal in a more restricted sense. Numerical experiments suggest that it is generally optimal to have periodic introductions after an initial warm-up phase. Finally, we focus on a setting in which the firm does not price-discriminate based on customers’ experience. We show both analytically and numerically that in the nondiscriminatory setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good performance guarantees. Funding: This material is based upon work supported by INSEAD and University Pierre et Marie Curie [Grant ELICIT], as well as by the National Science Foundation [Grant 2110707]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2364 . 
    more » « less