skip to main content


Title: Draft Genome Sequence of the Termite-Associated “Cuckoo Fungus,” Athelia ( Fibularhizoctonia ) sp. TMB Strain TB5
ABSTRACT Atheliales is a diverse order of crust-forming Basidiomycota fungi. Here, we report the draft genome of the “cuckoo fungus,” Athelia ( Fibularhizoctonia ) sp. TMB strain TB5 (Atheliales), which forms termite-egg-mimicking sclerotia that termites tend. We further compare its repertoire of psilocybin gene homologs to homologs previously reported for Fibularhizoctonia psychrophila .  more » « less
Award ID(s):
1638999
NSF-PAR ID:
10291066
Author(s) / Creator(s):
; ;
Editor(s):
Cuomo, Christina A.
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
10
Issue:
1
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Presgraves, D (Ed.)
    Abstract Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a compatible cifA-expressing strain rescue CI. Thus, cif-mediated CI confers a relative fitness advantage to females transmitting Wolbachia. However, whether cif sequence variation underpins incompatibilities between Wolbachia strains and variation in CI penetrance remains unknown. Here, we engineer Drosophila melanogaster to transgenically express cognate and non-cognate cif homologs and assess their CI and rescue capability. Cognate expression revealed that cifA;B native to D. melanogaster causes strong CI, and cognate cifA;B homologs from two other Drosophila-associated Wolbachia cause weak transgenic CI, including the first demonstration of phylogenetic type 2 cifA;B CI. Intriguingly, non-cognate expression of cifA and cifB alleles from different strains revealed that cifA homologs generally contribute to strong transgenic CI and interchangeable rescue despite their evolutionary divergence, and cifB genetic divergence contributes to weak or no transgenic CI. Finally, we find that a type 1 cifA can rescue CI caused by a genetically divergent type 2 cifA;B in a manner consistent with unidirectional incompatibility. By genetically dissecting individual CI functions for type 1 and 2 cifA and cifB, this work illuminates new relationships between cif genotype and CI phenotype. We discuss the relevance of these findings to CI’s genetic basis, phenotypic variation patterns, and mechanism. 
    more » « less
  2. Summary

    The petal spur of the basal eudicotAquilegiais a key innovation associated with the adaptive radiation of the genus. Previous studies have shown that diversification ofAquilegiaspur length can be predominantly attributed to variation in cell elongation. However, the genetic pathways that control the development of petal spurs are still being investigated.

    Here, we focus on a pair of closely related homologs of the AUXIN RESPONSE FACTOR family,AqARF6andAqARF8, to explore their roles inAquileiga coeruleapetal spur development.

    Expression analyses of the two genes show that they are broadly expressed in vegetative and floral organs, but have relatively higher expression in petal spurs, particularly at later stages. Knockdown of the twoAqARF6andAqARF8transcripts using virus‐induced gene silencing resulted in largely petal‐specific defects, including a significant reduction in spur length due to a decrease in cell elongation. These spurs also exhibited an absence of nectar production, which was correlated with downregulation ofSTYLISHhomologs that have previously been shown to control nectary development.

    This study provides the first evidence ofARF6/8homolog‐mediated petal development outside the core eudicots. The genes appear to be specifically required for cell elongation and nectary maturation in theAquilegiapetal spur.

     
    more » « less
  3. ABSTRACT Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa , a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. IMPORTANCE Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa —their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens. 
    more » « less
  4. ABSTRACT

    EseN is anEdwardsiella ictaluritype III secretion system effector with phosphothreonine lyase activity. In this work, we demonstrate that EseN inactivates p38 and c-Jun-N-terminal kinase (JNK) in infected head-kidney-derived macrophages (HKDMs). We have previously reported inactivation of extracellular-regulated kinase 1/2 (ERK1/2). Also, for the first time, we demonstrated that EseN is involved in the inactivation of 3-phosphoinositide-dependent kinase 1 (PDK1), which has not been previously demonstrated for any of the EseN homologs in other species. We also found that EseN significantly affected mRNA expression ofIL-10, pro-apoptoticbaxa, andp53, but had no significant effect on anti-apoptoticbcl2or pro-apoptotic apoptotic peptidase activating factor 1. EseN is also involved in the inhibition of caspase-8 and caspase-3/7 but does not affect caspase-9 activity. Repression of apoptosis was further confirmed with flow cytometry using Alexa Fluor 647-labeled annexin V and propidium iodide. In addition, we found that theE. ictaluriT3SS is essential for the inhibition of IL-1β maturation, but EseN is not involved in this process. EseN did not affect cell pyroptosis, as indicated by the lack of EseN impact on the release of lactate dehydrogenase from infected HKDM. The transmission electron microscopy data also indicate that HKDM infected with WT or aneseNmutant died by apoptosis, while HKDM infected with the T3SS mutant more likely died by pyroptosis. Collectively, our results indicate thatE. ictaluriEseN is involved in inactivation of ERK1/2, p38, JNK, and PDK1 signaling pathways that lead to modulation of cell death among infected HKDMs.

    IMPORTANCE

    This work has global significance in the catfish industry, which provides food for increasing global populations.E. ictaluriis a leading cause of disease loss, and EseN is an important player inE. ictalurivirulence. TheE. ictaluriT3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions ofE. ictaluriEseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.

     
    more » « less
  5. Abstract

    7‐Carboxy‐7‐deazaguanine synthase, QueE, catalyzes the radical mediated ring contraction of 6‐carboxy‐5,6,7,8‐tetrahydropterin, forming the characteristic pyrrolopyrimidine core of all 7‐deazaguanine natural products. QueE is a member of theS‐adenosyl‐L‐methionine (AdoMet) radical enzyme superfamily, which harnesses the reactivity of radical intermediates to perform challenging chemical reactions. Members of the AdoMet radical enzyme superfamily utilize a canonical binding motif, a CX3CXϕC motif, to bind a [4Fe‐4S] cluster, and a partial (β/α)6TIM barrel fold for the arrangement of AdoMet and substrates for catalysis. Although variations to both the cluster‐binding motif and the core fold have been observed, visualization of drastic variations in the structure of QueE fromBurkholderia multivoranscalled into question whether a re‐haul of the defining characteristics of this superfamily was in order. Surprisingly, the structure of QueE fromBacillus subtilisrevealed an architecture more reminiscent of the classical AdoMet radical enzyme. With these two QueE structures revealing varying degrees of alterations to the classical AdoMet fold, a new question arises: what is the purpose of these alterations? Here, we present the structure of a third QueE enzyme fromEscherichia coli,which establishes the middle range of the spectrum of variation observed in these homologs. With these three homologs, we compare and contrast the structural architecture and make hypotheses about the role of these structural variations in binding and recognizing the biological reductant, flavodoxin.

    Broader impact statement: We know more about how enzymes are tailored for catalytic activity than about how enzymes are tailored to react with a physiological reductant. Here, we consider structural differences between three 7‐carboxy‐7‐deazaguanine synthases and how these differences may be related to the interaction between these enzymes and their biological reductant, flavodoxin.

     
    more » « less