skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: De Novo Gene Birth, Horizontal Gene Transfer, and Gene Duplication as Sources of New Gene Families Associated with the Origin of Symbiosis in Amanita
Abstract By introducing novel capacities and functions, new genes and gene families may play a crucial role in ecological transitions. Mechanisms generating new gene families include de novo gene birth, horizontal gene transfer, and neofunctionalization following a duplication event. The ectomycorrhizal (ECM) symbiosis is a ubiquitous mutualism and the association has evolved repeatedly and independently many times among the fungi, but the evolutionary dynamics enabling its emergence remain elusive. We developed a phylogenetic workflow to first understand if gene families unique to ECM Amanita fungi and absent from closely related asymbiotic species are functionally relevant to the symbiosis, and then to systematically infer their origins. We identified 109 gene families unique to ECM Amanita species. Genes belonging to unique gene families are under strong purifying selection and are upregulated during symbiosis, compared with genes of conserved or orphan gene families. The origins of seven of the unique gene families are strongly supported as either de novo gene birth (two gene families), horizontal gene transfer (four), or gene duplication (one). An additional 34 families appear new because of their selective retention within symbiotic species. Among the 109 unique gene families, the most upregulated gene in symbiotic cultures encodes a 1-aminocyclopropane-1-carboxylate deaminase, an enzyme capable of downregulating the synthesis of the plant hormone ethylene, a common negative regulator of plant-microbial mutualisms.  more » « less
Award ID(s):
1638999
PAR ID:
10291103
Author(s) / Creator(s):
; ; ;
Editor(s):
Ma, Li-Jun
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
12
Issue:
11
ISSN:
1759-6653
Page Range / eLocation ID:
2168 to 2182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important func- tional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila mela- nogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction. 
    more » « less
  2. Parsch, John (Ed.)
    Abstract Evolutionary innovations generate phenotypic and species diversity. Elucidating the genomic processes underlying such innovations is central to understanding biodiversity. In this study, we addressed the genomic basis of evolutionary novelties in the glassy-winged sharpshooter (Homalodisca vitripennis, GWSS), an agricultural pest. Prominent evolutionary innovations in leafhoppers include brochosomes, proteinaceous structures that are excreted and used to coat the body, and obligate symbiotic associations with two bacterial types that reside within cytoplasm of distinctive cell types. Using PacBio long-read sequencing and Dovetail Omni-C technology, we generated a chromosome-level genome assembly for the GWSS and then validated the assembly using flow cytometry and karyotyping. Additional transcriptomic and proteomic data were used to identify novel genes that underlie brochosome production. We found that brochosome-associated genes include novel gene families that have diversified through tandem duplications. We also identified the locations of genes involved in interactions with bacterial symbionts. Ancestors of the GWSS acquired bacterial genes through horizontal gene transfer (HGT), and these genes appear to contribute to symbiont support. Using a phylogenomics approach, we inferred HGT sources and timing. We found that some HGT events date to the common ancestor of the hemipteran suborder Auchenorrhyncha, representing some of the oldest known examples of HGT in animals. Overall, we show that evolutionary novelties in leafhoppers are generated by the combination of acquiring novel genes, produced both de novo and through tandem duplication, acquiring new symbiotic associations that enable use of novel diets and niches, and recruiting foreign genes to support symbionts and enhance herbivory. 
    more » « less
  3. Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes. 
    more » « less
  4. Abstract We aim to enable the accurate and efficient transfer of knowledge about gene function gained fromArabidopsis thalianaand other model organisms to other plant species. This knowledge transfer is frequently challenging in plants due to duplications of individual genes and whole genomes in plant lineages. Such duplications result in complex evolutionary relationships between related genes, which may have similar sequences but highly divergent functions. In such cases, functional inference requires more than a simple sequence similarity calculation. We have developed an online resource, PhyloGenes (phylogenes.org), that displays precomputed phylogenetic trees for plant gene families along with experimentally validated function information for individual genes within the families. A total of 40 plant genomes and 10 non‐plant model organisms are represented in over 8,000 gene families. Evolutionary events such as speciation and duplication are clearly labeled on gene trees to distinguish orthologs from paralogs. Nearly 6,000 families have at least one member with an experimentally supported annotation to a Gene Ontology (GO) molecular function or biological process term. By displaying experimentally validated gene functions associated to individual genes within a tree, PhyloGenes enables functional inference for genes of uncharacterized function, based on their evolutionary relationships to experimentally studied genes, in a visually traceable manner. For the many families containing genes that have evolved to perform different functions, PhyloGenes facilitates the use of evolutionary history to determine the most likely function of genes that have not been experimentally characterized. Future work will enrich the resource by incorporating additional gene function datasets such as plant gene expression atlas data. 
    more » « less
  5. During surveys in central Florida of the zombie-ant fungus Ophiocordyceps camponoti-floridani , which manipulates the behavior of the carpenter ant Camponotus floridanus , two distinct fungal morphotypes were discovered associated with and purportedly parasitic on O. camponoti-floridani . Based on a combination of unique morphology, ecology and phylogenetic placement, we discovered that these morphotypes comprise two novel lineages of fungi. Here, we propose two new genera, Niveomyces and Torrubiellomyces , each including a single species within the families Cordycipitaceae and Ophiocordycipitaceae , respectively. We generated de novo draft genomes for both new species and performed morphological and multi-loci phylogenetic analyses. The macro-morphology and incidence of both new species, Niveomyces coronatus and Torrubiellomyces zombiae , suggest that these fungi are mycoparasites since their growth is observed exclusively on O. camponoti-floridani mycelium, stalks and ascomata, causing evident degradation of their fungal hosts. This work provides a starting point for more studies into fungal interactions between mycopathogens and entomopathogens, which have the potential to contribute towards efforts to battle the global rise of plant and animal mycoses. 
    more » « less