skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction
Recently, deep feedforward neural networks have achieved considerable success in modeling biological sensory processing, in terms of reproducing the input-output map of sensory neurons. However, such models raise profound questions about the very nature of explanation in neuroscience. Are we simply replacing one complex system (a biological circuit) with another (a deep network), without understanding either? Moreover, beyond neural representations, are the deep network's computational mechanisms for generating neural responses the same as those in the brain? Without a systematic approach to extracting and understanding computational mechanisms from deep neural network models, it can be difficult both to assess the degree of utility of deep learning approaches in neuroscience, and to extract experimentally testable hypotheses from deep networks. We develop such a systematic approach by combining dimensionality reduction and modern attribution methods for determining the relative importance of interneurons for specific visual computations. We apply this approach to deep network models of the retina, revealing a conceptual understanding of how the retina acts as a predictive feature extractor that signals deviations from expectations for diverse spatiotemporal stimuli. For each stimulus, our extracted computational mechanisms are consistent with prior scientific literature, and in one case yields a new mechanistic hypothesis. Thus overall, this work not only yields insights into the computational mechanisms underlying the striking predictive capabilities of the retina, but also places the framework of deep networks as neuroscientific models on firmer theoretical foundations, by providing a new roadmap to go beyond comparing neural representations to extracting and understand computational mechanisms.  more » « less
Award ID(s):
1845166
PAR ID:
10291282
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
32
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional neural networks (CNNs), a class of deep learning models, have experienced recent success in modeling sensory cortices and retinal circuits through optimizing performance on machine learning tasks, otherwise known as task optimization. Previous research has shown task-optimized CNNs to be capable of providing explanations as to why the retina efficiently encodes natural stimuli and how certain retinal cell types are involved in efficient encoding. In our work, we sought to use task-optimized CNNs as a means of explaining computational mechanisms responsible for motion-selective retinal circuits. We designed a biologically constrained CNN and optimized its performance on a motion-classification task. We drew inspiration from psychophysics, deep learning, and systems neuroscience literature to develop a toolbox of methods to reverse engineer the computational mechanisms learned in our model. Through reverse engineering our model, we proposed a computational mechanism in which direction-selective ganglion cells and starburst amacrine cells, both experimentally observed retinal cell types, emerge in our model to discriminate among moving stimuli. This emergence suggests that direction-selective circuits in the retina are ecologically designed to robustly discriminate among moving stimuli. Our results and methods also provide a framework for how to build more interpretable deep learning models and how to understand them. 
    more » « less
  2. null (Ed.)
    Deep neural networks (DNNs) are known for extracting useful information from large amounts of data. However, the representations learned in DNNs are typically hard to interpret, especially in dense layers. One crucial issue of the classical DNN model such as multilayer perceptron (MLP) is that neurons in the same layer of DNNs are conditionally independent of each other, which makes co-training and emergence of higher modularity difficult. In contrast to DNNs, biological neurons in mammalian brains display substantial dependency patterns. Specifically, biological neural networks encode representations by so-called neuronal assemblies: groups of neurons interconnected by strong synaptic interactions and sharing joint semantic content. The resulting population coding is essential for human cognitive and mnemonic processes. Here, we propose a novel Biologically Enhanced Artificial Neuronal assembly (BEAN) regularization 1 to model neuronal correlations and dependencies, inspired by cell assembly theory from neuroscience. Experimental results show that BEAN enables the formation of interpretable neuronal functional clusters and consequently promotes a sparse, memory/computation-efficient network without loss of model performance. Moreover, our few-shot learning experiments demonstrate that BEAN could also enhance the generalizability of the model when training samples are extremely limited. 
    more » « less
  3. The past decade has witnessed the great success of deep neural networks in various domains. However, deep neural networks are very resource-intensive in terms of energy consumption, data requirements, and high computational costs. With the recent increasing need for the autonomy of machines in the real world, e.g., self-driving vehicles, drones, and collaborative robots, exploitation of deep neural networks in those applications has been actively investigated. In those applications, energy and computational efficiencies are especially important because of the need for real-time responses and the limited energy supply. A promising solution to these previously infeasible applications has recently been given by biologically plausible spiking neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically realistic models of neurons to carry out the computation. Due to their functional similarity to the biological neural network, spiking neural networks can embrace the sparsity found in biology and are highly compatible with temporal code. Our contributions in this work are: (i) we give a comprehensive review of theories of biological neurons; (ii) we present various existing spike-based neuron models, which have been studied in neuroscience; (iii) we detail synapse models; (iv) we provide a review of artificial neural networks; (v) we provide detailed guidance on how to train spike-based neuron models; (vi) we revise available spike-based neuron frameworks that have been developed to support implementing spiking neural networks; (vii) finally, we cover existing spiking neural network applications in computer vision and robotics domains. The paper concludes with discussions of future perspectives. 
    more » « less
  4. A central goal in neuroscience is to understand how dynamic networks of neural activity produce effective representations of the world. Advances in the theory of graph measures raise the possibility of elucidating network topologies central to the construction of these representations. We leverage a result from the description of lollipop graphs to identify an iconic network topology in functional magnetic resonance imaging data and characterize changes to those networks during task performance and in populations diagnosed with psychiatric disorders. During task performance, we find that task-relevant subnetworks change topology, becoming more integrated by increasing connectivity throughout cortex. Analysis of resting-state connectivity in clinical populations shows a similar pattern of subnetwork topology changes; resting-scans becoming less default-like with more integrated sensory paths. The study of brain network topologies and their relationship to cognitive models of information processing raises new opportunities for understanding brain function and its disorders. 
    more » « less
  5. Abstract Modern data mining techniques using machine learning (ML) and deep learning (DL) algorithms have been shown to excel in the regression-based task of materials property prediction using various materials representations. In an attempt to improve the predictive performance of the deep neural network model, researchers have tried to add more layers as well as develop new architectural components to create sophisticated and deep neural network models that can aid in the training process and improve the predictive ability of the final model. However, usually, these modifications require a lot of computational resources, thereby further increasing the already large model training time, which is often not feasible, thereby limiting usage for most researchers. In this paper, we study and propose a deep neural network framework for regression-based problems comprising of fully connected layers that can work with any numerical vector-based materials representations as model input. We present a novel deep regression neural network, iBRNet, with branched skip connections and multiple schedulers, which can reduce the number of parameters used to construct the model, improve the accuracy, and decrease the training time of the predictive model. We perform the model training using composition-based numerical vectors representing the elemental fractions of the respective materials and compare their performance against other traditional ML and several known DL architectures. Using multiple datasets with varying data sizes for training and testing, We show that the proposed iBRNet models outperform the state-of-the-art ML and DL models for all data sizes. We also show that the branched structure and usage of multiple schedulers lead to fewer parameters and faster model training time with better convergence than other neural networks. Scientific contribution: The combination of multiple callback functions in deep neural networks minimizes training time and maximizes accuracy in a controlled computational environment with parametric constraints for the task of materials property prediction. 
    more » « less