skip to main content


Title: Regulation‐triggered adaptive control of a hyperbolic PDE‐ODE model with boundary interconnections
Summary

We present a certainty equivalence‐based adaptive boundary control scheme with a regulation‐triggered batch least‐squares identifier, for a heterodirectional transport partial differential equation‐ordinary differential equation (PDE‐ODE) system where the transport speeds of both transport PDEs are unknown. We use a nominal controller which is fed piecewise‐constant parameter estimates from an event‐triggered parameter update law that applies a least‐squares estimator to data “batches” collected over time intervals between the triggers. A parameter update is triggered by an observed growth in the norm of the PDE state. The proposed triggering‐based adaptive control guarantees: (1) the absence of a Zeno phenomenon; (2) parameter estimates are convergent to the true values in finite time (from most initial conditions); (3) exponential regulation of the plant states to zero. The effectiveness of the proposed design is verified by a numerical example.

 
more » « less
Award ID(s):
1935329
NSF-PAR ID:
10449678
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Adaptive Control and Signal Processing
Volume:
35
Issue:
8
ISSN:
0890-6327
Page Range / eLocation ID:
p. 1513-1543
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The intracellular transport process plays an important role in delivering essential materials throughout branched geometries of neurons for their survival and function. Many neurodegenerative diseases have been associated with the disruption of transport. Therefore, it is essential to study how neurons control the transport process to localize materials to necessary locations. Here, we develop a novel optimization model to simulate the traffic regulation mechanism of material transport in three-dimensional complex geometries of neurons. The transport is controlled to avoid traffic jams of materials by minimizing a predefined objective function. The optimization subjects to a set of partial differential equation (PDE) constraints that describe the material transport process based on a macroscopic molecular-motor-assisted transport model of intracellular particles. The proposed PDE-constrained optimization model is solved in complex tree structures by using the isogeometric analysis. Different simulation parameters are used to introduce traffic jams and study how neurons handle the transport issue. Specifically, we successfully model and explain the traffic jam caused by the reduced number of microtubules (MTs) and MT swirls. In summary, our model effectively simulates the material transport process in healthy neurons and also explains the formation of a traffic jam in abnormal neurons. Our results demonstrate that both geometry and MT structure play important roles in achieving an optimal transport process in neurons.

     
    more » « less
  2. This paper proposes a novel fault isolation (FI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FI scheme is its capability of dealing with the effects of system uncertainties for accurate FI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, to achieve locally-accurate identification of the uncertain system dynamics under faulty modes. A bank of FI estimators with associated adaptive thresholds are finally designed for real-time FI decision making. Rigorous analysis on the fault isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness of the proposed approach. 
    more » « less
  3. This paper proposes a novel fault detection and isolation (FDI) scheme for distributed parameter systems modeled by a class of parabolic partial differential equations (PDEs) with nonlinear uncertain dynamics. A key feature of the proposed FDI scheme is its capability of dealing with the effects of system uncertainties for accurate FDI. Specifically, an approximate ordinary differential equation (ODE) system is first derived to capture the dominant dynamics of the original PDE system. An adaptive dynamics identification approach using radial basis function neural network is then proposed based on this ODE system, so as to achieve locally-accurate identification of the uncertain system dynamics under normal and faulty modes. A bank of FDI estimators with associated adaptive thresholds are finally designed for real-time FDI decision making. Rigorous analysis on the FDI performance in terms of fault detectability and isolatability is provided. Simulation study on a representative transport-reaction process is conducted to demonstrate the effectiveness and advantage of the proposed approach. 
    more » « less
  4. null (Ed.)
    State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion. 
    more » « less
  5. Abstract

    We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of$$C^{\infty }$$Cbump functions of varying support sizes.We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available athttps://github.com/MathBioCU/WENDy.

     
    more » « less