skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting Acknowledgment Mechanism for Transport Control: Modeling, Analysis, and Implementation
The shared nature of the wireless medium induces contention between data transport and backward signaling, such as acknowledgment. The current way of TCP acknowledgment induces control overhead which is counter-productive for TCP performance especially in wireless local area network (WLAN) scenarios. In this paper, we present a new acknowledgment called TACK (“Tame ACK”), as well as its TCP implementation TCP-TACK. TACK seeks to minimize ACK frequency, which is exactly what is required by transport. TCP-TACK works on top of commodity WLAN, delivering high wireless transport goodput with minimal control overhead in the form of ACKs, without any hardware modification. Evaluation results show that TCP-TACK achieves significant advantages over legacy TCP in WLAN scenarios due to less contention between data packets and ACKs. Specifically, TCP-TACK reduces over 90% of ACKs and also obtains an improvement of up to 28% on goodput. A TACK-based protocol is a good replacement of the legacy TCP to compensate for scenarios where the acknowledgment overhead is non-negligible.  more » « less
Award ID(s):
1909212 1763256
PAR ID:
10291630
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE/ACM Transactions on Networking
ISSN:
1063-6692
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The shared nature of the wireless medium induces contention between data transport and backward signaling, such as acknowledgement. The current way of TCP acknowledgment induces control overhead which is counter-productive for TCP performance especially in wireless local area network (WLAN) scenarios.In this paper, we present a new acknowledgement called TACK ("Tame ACK"), as well as its TCP implementation TCP-TACK. TCP-TACK works on top of commodity WLAN, delivering high wireless transport goodput with minimal control overhead in the form of ACKs, without any hardware modification. To minimize ACK frequency, TACK abandons the legacy received-packet-driven ACK. Instead, it balances byte-counting ACK and periodic ACK so as to achieve a controlled ACK frequency. Evaluation results show that TCP-TACK achieves significant advantages over legacy TCP in WLAN scenarios due to less contention between data packets and ACKs. Specifically, TCP-TACK reduces over 90% of ACKs and also obtains an improvement of ~ 28% on good-put. We further find it performs equally well as high-speed TCP variants in wide area network (WAN) scenarios, this is attributed to the advancements of the TACK-based protocol design in loss recovery, round-trip timing, and send rate control. 
    more » « less
  2. Vanbever, Laurent; Zhang, Irene (Ed.)
    In response to concerns about protocol ossification and privacy, post-TCP transport protocols such as QUIC and WebRTC include end-to-end encryption and authentication at the transport layer. This makes their packets opaque to middleboxes, freeing the transport protocol to evolve but preventing some in-network innovations and performance improvements. This paper describes sidekick protocols: an approach to in-network assistance for opaque transport protocols where in-network intermediaries help endpoints by sending information adjacent to the underlying connection, which remains opaque and unmodified on the wire. A key technical challenge is how the sidekick connection can efficiently refer to ranges of packets of the underlying connection without the ability to observe cleartext sequence numbers. We present a mathematical tool called a quACK that concisely represents a selective acknowledgment of opaque packets, without access to cleartext sequence numbers. In real-world and emulation-based evaluations, the sidekick improved performance in several scenarios: early retransmission over lossy Wi-Fi paths, proxy acknowledgments to save energy, and a path-aware congestion-control mechanism we call PACUBIC that emulates a “split” connection. 
    more » « less
  3. In response to ossification and privacy concerns, post-TCP transport protocols such as QUIC are designed to be “paranoid”—opaque to meddling middleboxes by encrypting and authenticating the header and payload—making it impossible for Performance-Enhancing Proxies (PEPs) to provide the same assistance as before. We propose a research agenda towards an alternate approach to PEPs, creating a sidecar protocol that is loosely-coupled to the unchanged and opaque, underlying transport protocol. The key technical challenge to sidecar protocols is how to usefully refer to the packets of the underlying connection without ossification. We have made progress on this problem by creating a tool we call a quACK (quick ACK), a concise representation of a multiset of numbers that can be used to efficiently decode the randomly-encrypted packet contents a sidecar has received. We implement the quACK and discuss how to achieve several applications with this approach: alternate congestion control, ACK reduction, and PEP-to-PEP retransmission across a lossy subpath. 
    more » « less
  4. BBR is a new congestion control algorithm proposed by Google that builds a model of the network path consisting of its bottleneck bandwidth and RTT to govern its sending rate rather than packet loss (like CUBIC and many other popular congestion control algorithms). Loss-based congestion control has been shown to be vulnerable to acknowledgment manipulation attacks. However, no prior work has investigated how to design such attacks for BBR, nor how effective they are in practice. In this paper we systematically analyze the vulnerability of BBR to acknowledgement manipulation attacks. We create the first detailed BBR finite state machine and a novel algorithm for inferring its current BBR state at runtime by passively observing network traffic.We then adapt and apply a TCP fuzzer to the Linux TCP BBR v1.0 implementation. Our approach generated 30,297 attack strategies, of which 8,859 misled BBR about actual network conditions. From these, we identify 5 classes of attacks causing BBR to send faster, slower or stall. We also found that BBR is immune to acknowledgment burst, division and duplication attacks that were previously shown to be effective against loss-based congestion control such as TCP New Reno. 
    more » « less
  5. The volume of data generated and stored in contemporary global data centers is experiencing exponential growth. This rapid data growth necessitates efficient processing and anal- ysis to extract valuable business insights. In distributed data processing systems, data undergoes exchanges between the compute servers that contribute significantly to the total data processing duration in adequately large clusters, neces- sitating efficient data transport protocols. Traditionally, data transport frameworks such as JDBC and ODBC have used TCP/IP-over-Ethernet as their under- lying network protocol. Such frameworks require serializing the data into a single contiguous buffer before handing it off to the network card, primarily due to the requirement of contiguous data in TCP/IP. In OLAP use cases, this seri- alization process is costly for columnar data batches as it involves numerous memory copies that hurt data transport duration and overall data processing performance. We study the serialization overhead in the context of a widely-used columnar data format, Apache Arrow, and propose lever- aging RDMA to transport Arrow data over Infiniband in a zero-copy manner. We design and implement Thallus, an RDMA-based columnar data transport protocol for Apache Arrow based on the Thallium framework from the Mochi ecosystem, compare it with a purely Thallium RPC-based implementation, and show substantial performance improve- ments can be achieved by using RDMA for columnar data transport. 
    more » « less