skip to main content

Title: Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance
Abstract Necroptosis is a lytic, inflammatory form of cell death that not only contributes to pathogen clearance but can also lead to disease pathogenesis. Necroptosis is triggered by RIPK3-mediated phosphorylation of MLKL, which is thought to initiate MLKL oligomerisation, membrane translocation and membrane rupture, although the precise mechanism is incompletely understood. Here, we show that K63-linked ubiquitin chains are attached to MLKL during necroptosis and that ubiquitylation of MLKL at K219 significantly contributes to the cytotoxic potential of phosphorylated MLKL. The K219R MLKL mutation protects animals from necroptosis-induced skin damage and renders cells resistant to pathogen-induced necroptosis. Mechanistically, we show that ubiquitylation of MLKL at K219 is required for higher-order assembly of MLKL at membranes, facilitating its rupture and necroptosis. We demonstrate that K219 ubiquitylation licenses MLKL activity to induce lytic cell death, suggesting that necroptotic clearance of pathogens as well as MLKL-dependent pathologies are influenced by the ubiquitin-signalling system.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis and pneumonia in infants and children worldwide. Inflammation induced by RSV infection is responsible for its hallmark manifestation of bronchiolitis and pneumonia. The cellular debris created through lytic cell death of infected cells is a potent initiator of this inflammation. Macrophages are known to play a pivotal role in the early innate immune and inflammatory response to viral pathogens. However, the lytic cell death mechanisms associated with RSV infection in macrophages remains unknown. Two distinct mechanisms involved in lytic cell death are pyroptosis and necroptosis. Our studies revealed that RSV induces lytic cell death in macrophages via both of these mechanisms, specifically through the ASC (Apoptosis-associated speck like protein containing a caspase recruitment domain)-NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome activation of both caspase-1 dependent pyroptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), as well as a mixed lineage kinase domain like pseudokinase (MLKL)-dependent necroptosis. In addition, we demonstrated an important role of reactive oxygen species (ROS) during lytic cell death of RSV-infected macrophages. 
    more » « less
  2. Necroptosis is a type of programed cell death characterized by an inflammatory phenotype due to extensive membrane permeabilization and rupture. Initiation of necroptosis involves activation of tumor necrosis factor receptors by tumor necrosis factor alpha (TNFα) followed by coordinated activities of receptor-interacting protein kinases and mixed lineage kinase-like protein (MLKL). Subsequently, MLKL undergoes phosphorylation and translocates to the plasma membrane, leading to permeabilization. Such permeabilization results in the release of various cytokines and causes extensive inflammatory activity at the organismal level. This inflammatory activity is one of the major differences between apoptosis and necroptosis and links necroptosis to several human pathologies that exhibit inflammation, in addition to the ultimate cell death phenotype. Given the crosstalk between the activation of cell death pathway and inflammatory activity, approaches that provide insights on the regulation of transcripts, proteins and their processing at the global level have substantially improved our understanding of necroptosis and its involvement in different disease states. In this review, we highlight recent omic studies probing the transcriptome, proteome and lipidome which elucidate potential new mechanisms and signaling pathways during necroptosis and the necroptosis-associated inflammatory activity observed in various diseases. We specifically focus on studies investigating the transcriptome and intracellular and released proteome that contribute to inflammatory nature of necroptotic cells. We also highlight different lipids that have been implicated in necroptosis and lipidomic studies identifying lipid players in necroptosis. Finally, we review studies which suggest certain necroptosis-related genes as potential prognosis markers for different cancers and discuss their translational implications. 
    more » « less
  3. Necroptosis is a type of programmed cell death. It is characterized by membrane permeabilization and is associated with the release of intracellular components due to compromised membrane integrity which induces a strong inflammatory response. We recently showed that the accumulation of very long chain fatty acids (VLCFAs) contributes to membrane permeabilization during necroptosis. However, the mechanisms that result in the accumulation of these cytotoxic lipids remain unknown. Using comparative transcriptomics and digital PCR validations, we found that several target genes of sterol regulatory element-binding proteins (SREBPs) were upregulated during necroptosis, suggesting that they might be responsible for the accumulation of VLCFA in this process. We demonstrated that activation of SREBPs during necroptosis exacerbates the permeability of the plasma membrane and cell death. Consistent with these observations, targeting sterol regulatory element-binding protein cleavage-activating protein (SCAP), a protein involved in SREBP activation, reversed the accumulation of VLCFAs, and restored cell death and membrane permeabilization during necroptosis. Collectively, our results highlight a role for SREBP in regulating lipid changes during necroptosis and suggest SREBP-mediated lipid remodeling as a potential target for therapeutics to reduce membrane permeabilization during necroptosis. 
    more » « less
  4. The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy. 
    more » « less
  5. Summary

    The bacterial cytoplasmic membrane is a principal site of protein translocation, lipid and peptidoglycan biogenesis, signal transduction, transporters and energy generating components of the respiratory chain. Although 25–30% of bacterial proteomes consist of membrane proteins, a comprehensive understanding of their influence on fundamental cellular processes is incomplete. Here, we show that YciB and DcrB, two small cytoplasmic membrane proteins of previously unknown functions, play an essential synergistic role in maintaining cell envelope integrity ofEscherichiacoli. Lack of both YciB and DcrB results in pleiotropic cell defects including increased levels of lipopolysaccharide, membrane vesiculation, dynamic shrinking and extension of the cytoplasmic membrane accompanied by lysis and cell death. The stalling of an abundant outer membrane lipoprotein, Lpp, at the periplasmic face of the inner membrane leads to lethal inner membrane–peptidoglycan linkages. Additionally, the periplasmic chaperone Skp contributes toyciBdcrBmutant cell death by possibly mistargeting stalled porins into the inner membrane. Consistent with the idea of a compromised envelope in theyciBdcrBmutant, multiple envelope stress response systems are induced, with Cpx signal transduction being required for growth. Taken together, our results suggest a fundamental role for YciB and DcrB in cell envelope biogenesis.

    more » « less