skip to main content


Title: Engaging undergraduate students in computational chemistry research: A tutorial for new assistant professors
Abstract

In this article, we provide advice and insights, based on our own experiences, for computational chemists who are beginning new tenure‐track positions at primarily undergraduate institutions. Each of us followed different routes to obtain our tenure‐track positions, but we all experienced similar challenges when getting started in our new position. In this article, we discuss our approaches to seven areas that we all found important for engaging undergraduate students in our computational chemistry research, including setting up computational resources, recruiting research students, training research students, designing student projects, managing the lab, mentoring students, and student conference participation.

 
more » « less
Award ID(s):
2018427
NSF-PAR ID:
10456859
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Quantum Chemistry
Volume:
120
Issue:
20
ISSN:
0020-7608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past 50 years the diversity of higher education faculty in the mathematical, physical, computer, and engineering sciences (MPCES) has advanced very little at 4-year universities in the United States. This is despite laws and policies such as affirmative action, interventions by universities, and enormous financial investment by federal agencies to diversify science, technology, mathematics, and engineering (STEM) career pathways into academia. Data comparing the fraction of underrepresented minority (URM) postdoctoral scholars to the fraction of faculty at these institutions offer a straightforward empirical explanation for this state of affairs. URM postdoc appointments lag significantly behind progress in terms of both undergraduate and Ph.D.-level STEM student populations. Indeed, URM postdoc appointments lag well-behind faculty diversity itself in the MPCES fields, most of which draw their faculty heavily from the postdoctoral ranks, particularly at research-intensive (R1) universities. Thus, a sea-change in how postdocs are recruited, how their careers are developed, and how they are identified as potential faculty is required in order to diversify the nation’s faculty, and particularly the R1 MPCES professoriate. Our research shows that both Ph.D. students and postdocs benefit from intentional structure at various levels of their respective “apprentice” experiences, a factor that we believe has been neglected. Several key structural approaches are highly effective in these regards: (1) A collaborative approach in which leading research universities collectively identify outstanding URM candidates; (2) Faculty engagement in recruiting and supporting these postdocs; (3) Inter-institutional exchange programs to heighten the visibility and broaden the professional experiences of these postdocs; (4) Community-building activities that create a sense of belonging and encourage continuing in academia for each cohort; and (5) Continuing research based on outcomes and new experimental approaches. The California Alliance, consisting of UC Berkeley, UCLA, Caltech, and Stanford, has been engaged in such a program for almost a decade now, with most of the California Alliance URM postdocs now in tenure track positions or on the path toward careers as faculty at research intensive (R1) institutions. If this approach was brought to scale by involving the top 25 or so URM Ph.D.-producing R1 institutions in the MPCES fields, about 40% of the national URM postdoctoral population in these fields could be affected. Although this impact would fall short of bringing URM MPCES faculty ranks up to full representation of the United States population as a whole, it would vastly improve the outlook for URM students and their aspirations to take on leadership roles as scientists and engineers. 
    more » « less
  2. Foundational engineering courses are critical to student success in engineering programs. The conceptually challenging content of these courses establishes the requisite knowledge for future classes. Thus, it is no surprise that such courses can serve as barriers or gatekeepers to successful student progress through the undergraduate curriculum. Although the difficulty of the courses may be necessary, often other features of the course delivery such as large class environments or a few very high-stakes assessments can further exacerbate these challenges. And especially problematic, past studies have shown that grade penalties associated with these courses and environments may disproportionately impact women. On the faculty side, institutions often turn to non-tenure track instructional faculty to teach multiple sections of foundational courses each semester. Although having faculty whose sole role is dedicated to quality teaching is an asset, benefits would likely be maximized when such faculty have clear metrics for paths to promotion, some autonomy and ownership regarding the curriculum, and overall job satisfaction. However, literature suggests that faculty, like students, note ill effects from large classes, such as challenges connecting and building rapport with students and having time to offer individualized feedback to students. Our NSF IUSE project focuses on instructors of large foundational engineering students with the belief that by better understanding the educational environment from their perspective we can improve the quality of the teaching and learning environment for all engineering students. Our project regularly convenes faculty teaching an array of core courses (e.g,. Mathematics, Chemistry, Mechanics, Physics) and uses insights from these meetings and individual interviews to identify possible leverage points where our project or the institution more broadly might affect change. Parallel to this effort, we have been working with data stewards on campus to gain access to institutional data (e.g., student course and grade histories, student evaluations of faculty teaching) to link and provide aggregate deidentified results to faculty to feed more information in to their decision-making. We are demonstrating that regular engagement between faculty and institutional leaders around analyzed and curated data is essential to continuous and systematic improvement. Efforts to date have included building an institutional data explorer dashboard (e.g., influences of pre-requisite courses on future courses) and drafting reports to be sent to department heads and associate deans which gather priorities identified in the first year of our research. For example, participating instructors identified that clarity of promotion paths across non-tenure track teaching faculty from different departments varied greatly, and the institution as a whole could benefit from clarified university-wide guidance. While some findings may be institution-specific (NSF IUSE Institutional Transformation track), as a large public research institution, peer-institutions with high engineering enrollments often face similar challenges and so findings from our change efforts potentially have broad applicability. 
    more » « less
  3. Despite efforts over the past few decades to promote diversity and foster inclusive campus climates, there is still underrepresentation of Blacks/ African Americans, Latinx/Hispanics, and Native Americans (including Native Hawaiians and Alaska Natives) within the STEM professoriate nationwide. For students who are members of these groups, the culturally isolating experience this deficit creates can weaken one's academic self-perception, and hinder performance in STEM disciplines. This paper explores the relationship between intentionality towards diversity and inclusion in faculty job postings and corresponding faculty demographics at a variety of US postsecondary institutions. The research questions we are investigating are: •In what ways are diversity and inclusion implicitly and explicitly addressed in the evaluated job postings? •Does intentionality towards diversity and inclusion in job postings vary based on the type of position advertised (i.e., tenured/tenure track versus non-tenure-track) or institution type (i.e., Basic Carnegie Classification)? Using HigherEdJobs.com, we conducted an advanced search of all open science and engineering faculty positions containing the keywords "data science", "data engineering", "data analysis", or "data analytics." Each result posted in September 2019 that advertised a full-time tenured/tenure-track or non-tenure track faculty appointment for at least one academic year at a US college or university was recorded. All qualifying job postings were qualitatively analyzed for active, intentional recruitment of URM candidates. Intentionality towards diversity and inclusion varied significantly across job postings. While some had no reference to diversity beyond a required one-sentence equal employment opportunity (EEO) statement, others explicitly addressed inclusion within the announcements, and still others required a standalone diversity statement as part of a complete application. The results will help to inform strategies for recruiting URM faculty in STEM disciplines, which may lead to improved opportunities to create cultures of inclusion and support for diverse students (undergraduate and graduate) and postdoctoral fellows. 
    more » « less
  4. Abstract Background

    The number of engineering PhDs pursuing postdoctoral research scholar (postdoc) positions has steadily increased in the last 30 years. Postdoc positions are commonly thought of as a step toward academic careers. However, engineering PhDs are more likely to work in industry, which leaves open the question of the role of postdocs in the career trajectories of engineering PhDs.

    Purpose/hypothesis

    This study examines the factors associated with attainment of postdocs. It also identifies the influence of postdocs on attainment of tenure‐track faculty positions and early career salaries.

    Design/method

    Super's “life span, life space” theory informs the analytical approach. Descriptive and regression analyses, and propensity score matching, are conducted using a nationally representative sample of engineering PhDs from the 1993–2013 National Science Foundation Survey of Doctorate Recipients data set merged with the 1985–2013 Survey of Earned Doctorates.

    Results

    Engineering PhDs primarily funded by research assistantships and who graduated from a doctoral program with higher‐ranked research activities and greater proportions of previous cohorts pursuing postdocs are more likely to attain postdoc positions. Among engineering PhDs, postdoctoral scholars are more likely than PhDs in nonacademic positions to attain tenure‐track faculty positions. Early career average salaries are relatively similar between postdoctoral scholars and PhDs without postdoc experiences working in the academic sector.

    Conclusions

    Postdoctoral research positions can provide a viable pathway toward careers in the academic sector. Engineering doctoral programs can potentially apply research findings toward student career development and preparation, and engineering students and PhDs can leverage the career outlook information for decision‐making and career preparation.

     
    more » « less
  5. This article presents new quasi-experimental evidence regarding the effectiveness of teaching-oriented faculty with tenure-track appointment, a model pioneered at the University of California (UC) system. Using data from six cohorts of students at a UC campus, we examine the impact of initial course-taking with three distinct types of instructors—tenure-track research faculty, tenure-track teaching faculty, and contingent lecturers—on students’ current and subsequent academic outcomes. Descriptive analyses indicate that tenure-track teaching faculty assume a substantially larger teaching load than either research faculty or lecturers. Using a three-way fixed effects model, we find limited evidence supporting differences by faculty type on either current or downstream student outcomes.

     
    more » « less