skip to main content


Title: Challenges and Unexpected Affordances of Physical Computing Going Remote
Engaging in physical computing activities involving both hard- ware and software provides a hands-on introduction to computer science. The move to remote learning for primary and secondary schools during the 2020-2021 school year due to COVID-19 made implementing physical computing activities especially challenging. However, it is important that these activities are not simply eliminated from the curriculum. This paper explores how a unit centered around students investigating how programmable sensors that can support data-driven scientific inquiry was collaboratively adapted for remote instruction. A case study of one teacher’s experience implementing the unit with a group of middle school students (ages 11 to 14) in her STEM elective class examines how her students could still engage in computational thinking practices around data and programming. The discussion includes both the challenges and unexpected affordances of engaging in physical computing activities remotely that emerged from her implementation.  more » « less
Award ID(s):
1742053 1742046 2019805
NSF-PAR ID:
10291745
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Computing Education Research
Page Range / eLocation ID:
276 to 282
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Engaging in physical computing activities involving both hard- ware and software provides a hands-on introduction to computer science. The move to remote learning for primary and secondary schools during the 2020-2021 school year due to COVID-19 made implementing physical computing activities especially challenging. However, it is important that these activities are not simply eliminated from the curriculum. This paper explores how a unit centered around students investigating how programmable sensors that can support data-driven scientific inquiry was collaboratively adapted for remote instruction. A case study of one teacher’s experience implementing the unit with a group of middle school students (ages 11 to 14) in her STEM elective class examines how her students could still engage in computational thinking practices around data and programming. The discussion includes both the challenges and unexpected affordances of engaging in physical computing activities remotely that emerged from her implementation. 
    more » « less
  2. The paper draws on data collected during an inquiry-oriented instructional approach in which students learn to program a sensor-based physical computing system to collect and display meaningful data from the world around them. As part of one instructional unit (Sensor Immersion Unit) students debug their system when it does not work as they expect it to. We present a case study of how one teacher (Gabrielle) acted as a caring collaborator with students as they addressed hardware and software problems. This included modeling and articulating a regular systematic approach to becoming “unstuck,” which we map in analysis. Gabrielle’s approach to supporting students, or her debugging pedagogy, positions debugging as core computing practice rather than as a means to overcome failure. 
    more » « less
  3. Physical computing projects provide rich opportunities for students to design, construct, and program machines that can sense and interact with the environment. However, students engaging in these activities often struggle to decipher the behavior of hardware components, software, and the interaction between the two. I report on the experiences of middle school students using a software tool, Circuit Check, designed to scaffold the debugging process in physical computing systems. Through think-aloud problem-solving exercises, I found Circuit Check facilitated rich instructor-student discussions. Incorporating these preliminary observations, I discuss design considerations for physical computing tools that support productive struggles and student sense-making 
    more » « less
  4. Physical computing projects provide rich opportunities for students to design, construct, and program machines that can sense and interact with the environment. However, students engaging in these activities often struggle to decipher the behavior of hardware components, software, and the interaction between the two. I report on the experiences of middle school students using a software tool, Circuit Check, designed to scaffold the debugging process in physical computing systems. Through think-aloud problem-solving exercises, I found Circuit Check facilitated rich instructor-student discussions. Incorporating these preliminary observations, I discuss design considerations for physical computing tools that support productive struggles and student sense-making 
    more » « less
  5. Research on students’ engagement suggests that epistemic affect--that is, the feelings and emotions experienced in the epistemic work of making sense of phenomena-- should be recognized as a central component of meaningful disciplinary engagement in science. These feelings and emotions are not tangential by-products, but are essential components of disciplinary engagement. Yet, there is still much to understand about how educators can attend and respond to students’ emotions in ways that support disciplinary engagement in science. To inform these efforts, we follow one high school Biology teacher, Amelia, to answer the following question: How does Amelia attend to and support her students’ emotions in ways that support their disciplinary engagement? Data examined include teacher interviews and classroom recordings of two multi-day science lessons. We found that the teacher worked to support her students’ emotions in moments of uncertainty in at least two ways: (1) by attending to these emotions directly, and (2) by sharing her personal experiences and feelings in engaging in similar activities as a science learner. We describe how Amelia made herself vulnerable to students, describing her own struggles in making sense of phenomena, in turn supporting her students to normalize these experiences as part of doing science. 
    more » « less