skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental warming differentially affects vegetative and reproductive phenology of tundra plants
Abstract Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.  more » « less
Award ID(s):
1931333 1637686 1636476 1836839 1836898
PAR ID:
10291965
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase. 
    more » « less
  2. As plants continue to respond to global warming with phenological shifts, our understanding of the importance of short‐lived heat events and seasonal weather cues has lagged relative to our understanding of plant responses to broad shifts in mean climate conditions. Here, we explore the importance of warmer‐than‐average days in driving shifts in phenophase duration for spring‐flowering woodland herbs across one growing season. We harnessed the combined power of community science and public gardens, engaging more than 30 volunteers to monitor shifts in phenology (documenting movement from one phenophase to the next) for 198 individual plants of 14 species twice per week for the 2023 growing season (March—October) across five botanic gardens in the midwestern and southeastern US. Gardens included the Holden Arboretum, Kirtland, OH; Dawes Arboretum, Newark, OH; Chicago Botanic Garden, Glencoe, IL; Missouri Botanical Garden, St. Louis, MO; and Huntsville Botanical Garden, Huntsville, AL. We tested: (1) that higher‐than‐average daily temperatures (deviation from 30‐year historical mean daily temperatures for each location) would be related to truncated phenophase durations; and (2) that phenophase durations would vary among species. Our findings support both hypotheses. We documented significant inverse relationships between positive deviations in daily temperature from historic means (e.g., warmer‐than‐average days) and durations of three reproductive phenophases: “First Bud,” “First Ripe Fruit,” and “Early Fruiting.” Similar (non‐significant) trends were noted for several other early‐season phenophases. Additionally, significant differences in mean phenophase durations were detected among the different species, although these differences were inconsistent across plant parts (vegetative, flowering, and fruiting). Results underscore the potential sensitivity of understory herb reproductive phenophases to warmer‐than‐average daily temperatures early in the growing season, contributing to our understanding of phenological responses to short‐term heat events and seasonal weather cues. 
    more » « less
  3. The phenology of Arctic plants is an important determinant of the pattern of carbon uptake and may be highly sensitive to continued rapid climate change. Eriophorum vaginatum L. (Cyperaceae) has a disproportionate influence over ecosystem processes in moist acidic tundra, but it is unclear whether its growth and phenology will remain competitive in the future. We investigated whether northern tundra ecotypes of E. vaginatum could extend their growing season in response to direct warming and transplanting into southern ecosystems. At the same time, we examined whether southern ecotypes could adjust their growth patterns in order to thrive further north, should they disperse quickly enough. Detailed phenology measurements across three reciprocal transplant gardens over a 2-year period showed that some northern ecotypes were capable of growing for longer when conditions were favourable, but their biomass and growing season length was still shorter than those of the southern ecotype. Southern ecotypes retained large leaf length when transplanted north and mirrored the growing season length better than the others, mainly owing to immediate green-up after snowmelt. All ecotypes retained the same senescence timing, regardless of environment, indicating a strong genetic control. Eriophorum vaginatum may remain competitive in a warming world if southern ecotypes can migrate north. 
    more » « less
  4. ABSTRACT The below‐ground growing season often extends beyond the above‐ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above‐ and below‐ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above‐ and below‐ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine‐root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above‐ and below‐ground plant tissue, with the below‐ground season extending up to 74% (~56 days) beyond the onset of above‐ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below‐ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below‐ground productivity and altered carbon cycling in the tundra biome. 
    more » « less
  5. Abstract Rapid warming in northern ecosystems over the past four decades has resulted in earlier spring, increased precipitation, and altered timing of plant–animal interactions, such as herbivory. Advanced spring phenology can lead to longer growing seasons and increased carbon (C) uptake. Greater precipitation coincides with greater cloud cover possibly suppressing photosynthesis. Timing of herbivory relative to spring phenology influences plant biomass. None of these changes are mutually exclusive and their interactions could lead to unexpected consequences for Arctic ecosystem function. We examined the influence of advanced spring phenology, cloud cover, and timing of grazing on C exchange in the Yukon–Kuskokwim Delta of western Alaska for three years. We combined advancement of the growing season using passive-warming open-top chambers (OTC) with controlled timing of goose grazing (early, typical, and late season) and removal of grazing. We also monitored natural variation in incident sunlight to examine the C exchange consequences of these interacting forcings. We monitored net ecosystem exchange of C (NEE) hourly using an autochamber system. Data were used to construct daily light curves for each experimental plot and sunlight data coupled with a clear-sky model was used to quantify daily and seasonal NEE over a range of incident sunlight conditions. Cloudy days resulted in the largest suppression of NEE, reducing C uptake by approximately 2 g C m−2d−1regardless of the timing of the season or timing of grazing. Delaying grazing enhanced C uptake by approximately 3 g C m−2d−1. Advancing spring phenology reduced C uptake by approximately 1.5 g C m−2d−1, but only when plots were directly warmed by the OTCs; spring advancement did not have a long-term influence on NEE. Consequently, the two strongest drivers of NEE, cloud cover and grazing, can have opposing effects and thus future growing season NEE will depend on the magnitude of change in timing of grazing and incident sunlight. 
    more » « less