skip to main content


Title: Conformational control through co-operative nonconventional C—H...N hydrogen bonds
We report the design, synthesis, and crystal structure of a conjugated aryleneethynyl molecule, 2-(2-{4,5-dimethoxy-2-[2-(2,3,4-trifluorophenyl)ethynyl]phenyl}ethynyl)-6-[2-(pyridin-2-yl)ethynyl]pyridine, C 30 H 17 F 3 N 2 O 2 , that adopts a planar rhombus conformation in the solid state. The molecule crystallizes in the space group P -1, with Z = 2, and features two intramolecular sp 2 -C—H...N hydrogen bonds that co-operatively hold the arylethynyl molecule in a rhombus conformation. The H atoms are activated towards hydrogen bonding since they are situated on a trifluorophenyl ring and the H...N distances are 2.470 (16) and 2.646 (16) Å, with C—H...N angles of 161.7 (2) and 164.7 (2)°, respectively. Molecular electrostatic potential calculations support the formation of C—H...N hydrogen bonds to the trifluorophenyl moiety. Hirshfeld surface analysis identifies a self-complementary C—H...O dimeric interaction between adjacent 1,2-dimethoxybenzene segments that is shown to be common in structures containing that moiety.  more » « less
Award ID(s):
1903581 1903593
NSF-PAR ID:
10292184
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Volume:
77
Issue:
8
ISSN:
2053-2296
Page Range / eLocation ID:
485 to 489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In an attempt to grow 8-hydroxyquinoline–acetaminophen co-crystals from equimolar amounts of conformers in a chloroform–ethanol solvent mixture at room temperature, the title compound, C 9 H 7 NO, was obtained. The molecule is planar, with the hydroxy H atom forming an intramolecular O—H...N hydrogen bond. In the crystal, molecules form centrosymmetric dimers via two O—H...N hydrogen bonds. Thus, the hydroxy H atoms are involved in bifurcated O—H...N hydrogen bonds, leading to the formation of a central planar four-membered N 2 H 2 ring. The dimers are bound by intermolecular π–π stacking [the shortest C...C distance is 3.2997 (17) Å] and C—H...π interactions into a three-dimensional framework. The crystal grown represents a new monoclinic polymorph in the space group P 2 1 / n . The molecular structure of the present monoclinic polymorph is very similar to that of the orthorhombic polymorph (space group Fdd 2) studied previously [Roychowdhury et al. (1978). Acta Cryst. B 34 , 1047–1048; Banerjee & Saha (1986). Acta Cryst. C 42 , 1408–1411]. The structures of the two polymorphs are distinguished by the different geometries of the hydrogen-bonded dimers, which in the crystal of the orthorhombic polymorph possess twofold axis symmetry, with the central N 2 H 2 ring adopting a butterfly conformation. 
    more » « less
  2. null (Ed.)
    The title morpholinochlorin, C 46 H 16 F 20 N 4 O 3 , was crystallized from hexane/methylene chloride as its 0.44 methylene chloride solvate, C 46 H 16 F 20 N 4 O 3 ·0.44CH 2 Cl 2 . The morpholinochlorin was synthesized by stepwise oxygen insertion into a porphyrin using a `breaking and mending strategy': NaIO 4 -induced diol cleavage of the corresponding 2,3-dihydroxychlorin with in situ methanol-induced, acid-catalyzed intramolecular ring closure of the intermediate secochlorins bisaldehyde. Formally, one of the pyrrolic building blocks was thus replaced by a 2,3-dimethoxymorpholine moiety. Like other morpholinochlorins, the macrocycle of the title compound adopts a ruffled conformation, and the modulation of the porphyrinic π-system chromophore induces a red-shift of its optical spectrum compared to its corresponding chlorin analog. Packing in the crystal is governed by interactions involving the fluorine atoms of the pentafluorophenyl substituents, dominated by C—H...F interactions, and augmented by short fluorine...fluorine contacts, C—F...π interactions, and one severely slipped π-stacking interaction between two pentafluorophenyl rings. The solvate methylene chloride molecule is disordered over two independent positions around an inversion center with occupancies of two × 0.241 (5) and two × 0.199 (4), for a total site occupancy of 88%. 
    more » « less
  3. The molecular structure of the title compound, C 11 H 15 NO 2 S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane. 
    more » « less
  4. The structure of zymonic acid (systematic name: 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-2-carboxylic acid), C 6 H 6 O 5 , which had previously eluded crystallographic determination, is presented here for the first time. It forms by intramolecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxopropanoic acid), C 3 H 4 O 3 , at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B 33 , 210–212]. In zymonic acid, the hydroxylactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carboxylic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carboxylic acid group relative to the ring is 12.04 (16)°. The pyruvic acid molecule is almost planar, having a dihedral angle between the carboxylic acid and methyl-ketone groups of 3.95 (6)°. Intermolecular interactions in both crystal structures are dominated by hydrogen bonding. The common R 2 2 (8) hydrogen-bonding motif links carboxylic acid groups on adjacent molecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C 2/ c , which forces the carboxylic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H...O and weak C—H...O), link molecules across a 2 1 -screw axis, and generate an R 2 2 (9) motif. These hydrogen-bonding interactions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related molecules are linked into R 2 2 (8) dimers, with van der Waals interactions between dimers as the only other intermolecular contacts. 
    more » « less
  5. In the title compound, 3-[(2-acetamidophenyl)imino]butan-2-one, C 12 H 14 N 2 O 2 , the imine C=N bond is essentially coplanar with the ketone C=O bond in an s-trans conformation. The benzene ring is twisted away from the plane of the C=N bond by 53.03 (14)°. The acetamido unit is essentially coplanar with the benzene ring. In the crystal, molecules are connected into chains along the c axis through C—H...O hydrogen bonds, with two adjacent chains being hinged by C—H...O hydrogen bonds. 
    more » « less