skip to main content


Title: Timing and structure of early-Holocene climate anomalies inferred from north Chinese stalagmite records
In this paper, a new decadal resolution stalagmite δ18O record covering 10.4–6.5 ka BP from Kulishu cave in Beijing, north China is presented in combination with the published stalagmite δ18 O record covering 10.4–14.0 ka BP in the same cave. Five significant monsoon collapses were identified around 11.5, 11.0, 10.0, 9.4, and 8.2 ka BP as well as three smaller ones around 10.3, 9.0, and 8.6 ka BP. The weak monsoon episodes around 8.6 and 8.2 ka BP form the two-step structure of the 8.2 ka event. All monsoon collapses, coeval with the cooling in northern high-latitude records, are correlated with Lakes Agassiz-Ojibway outbursts. Thus, our data support the idea of freshwater forcing of abrupt climate anomalies during the early Holocene. Nevertheless, the decreased irradiance together with freshwater outburst may account for the 9.2/9.3 ka event, which is expressed more significantly in low-latitude records.  more » « less
Award ID(s):
1702816
NSF-PAR ID:
10292187
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Holocene
ISSN:
0959-6836
Page Range / eLocation ID:
095968362110332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Here we present, to date, the highest‐resolved (~5 years) and most precisely dated Holocene monsoon climate reconstruction for the western Chinese Loess Plateau based on five replicated stalagmite δ18O records from Wuya Cave, eastern Gansu, China. Our record suggests the wettest period occurred between 10,500 and 6,600 a BP in this region. After this period, the amplitude of Asian summer monsoon decadal‐scale variability progressively increased likely in response to increasing ENSO frequency since the middle Holocene. Our study reveals similar asymmetric centennial‐scale double‐plunging structures of the 8.2, 5.5, and 2.8 ka events in the western Chinese Loess Plateau, suggesting a possible role of solar activity whose impact was amplified around 8.2 ka BP by the meltwater flood. In contrast, the 4.2 ka event exhibit gradually declining monsoon rainfall with centennial‐ to decadal‐scale fluctuations.

     
    more » « less
  2. Abstract

    The 8.2 ka event is the most significant global climate anomaly of the Holocene epoch, but a lack of records from Mainland Southeast Asia (MSEA) currently limits our understanding of the spatial and temporal extent of the climate response. A newly developed speleothem record from Tham Doun Mai Cave, Northern Laos provides the first high‐resolution record of this event in MSEA. Our multiproxy record (δ18O, δ13C, Mg/Ca, Sr/Ca, and petrographic data), anchored in time by 9 U‐Th ages, reveals a significant reduction in local rainfall amount and weakening of the monsoon at the event onset at ∼8.29 ± 0.03 ka BP. This response lasts for a minimum of ∼170 years, similar to event length estimates from other speleothem δ18O monsoon records. Interestingly, however, our δ13C and Mg/Ca data, proxies for local hydrology, show that abrupt changes to local rainfall amounts began decades earlier (∼70 years) than registered in the δ18O. Moreover, the δ13C and Mg/Ca also show that reductions in rainfall continued for at least ∼200 years longer than the weakening of the monsoon inferred from the δ18O. Our interpretations suggest that drier conditions brought on by the 8.2 ka event in MSEA were felt beyond the temporal boundaries defined by δ18O‐inferred monsoon intensity, and an initial wet period (or precursor event) may have preceded the local drying. Most existing Asian Monsoon proxy records of the 8.2 ka event may lack the resolution and/or multiproxy information necessary to establish local and regional hydrological sensitivity to abrupt climate change.

     
    more » « less
  3. null (Ed.)
    Abstract Comprehensive comparison of paleoclimate change based on records constrained by precise chronology and high-resolution is essential to explore the correlation and interaction within earth climate systems. Here, we propose a new stalagmite-based multidecadal resolved Asian summer monsoon (ASM) record spanning the past thirty-seven thousand years (ka BP, before ad 1950) from Furong Cave, southwestern China. This record is consistent with the published Chinese stalagmite sequences and shows that the dominant controls of the ASM dynamics include not only insolation and solar activity but also suborbital-scale hydroclimate events in the high latitudes of the northern hemisphere, such as the Heinrich events, Bølling-Allerød (BA), and Younger Dryas (YD). Benefit from the unprecedented accurate chronology, the timings of these events are precisely dated, with uncertainties of, at most, 40 years (2σ). The onset of the weak ASM during the YD began at 12.92 ka BP and lasted for 430 years. The occurrence of the 200-yr Older Dryas during the BA period was dated from 13.87 to 14.06 ka BP. The durations of the three Heinrich (H) events, H1, H2, and H3, are 14.33–18.29, 23.77–24.48, and 28.98–30.46 ka BP, respectively. Furong record shows surprisingly variable onset transitions of 980, 210, and 40 years for the corresponding weak ASM events. These discrepancies suggest different influences of the H events on ASM dynamics. During the periods of H 1–3, the obvious difference between our Furong record and NGRIP δ 18 O record indicated the decoupling correlation between the mid-low latitudes and high latitudes. On the other hand, synchronous climate change in high and low latitudes suggests another possibility which different to the dominant role of Northern high latitudes in triggering global climate change. Our high quality records also indicate a plausible different correlation between the high and mid-low latitudes under glacial and inter-glacial background, especially for the ASM regimes. 
    more » « less
  4. Abstract. Although the collapses of several Neolithic cultures in China areconsidered to have been associated with abrupt climate change during the4.2kaBP event (4.2–3.9kaBP), the timing and nature of this event andthe spatial distribution of precipitation between northern and southern Chinaare still controversial. The hydroclimate of this event insoutheastern China is still poorly known, except for a few published recordsfrom the lower reaches of the Yangtze River. In this study, a high-resolutionrecord of monsoon precipitation between 5.3 and 3.57kaBP based on astalagmite from Shennong Cave, Jiangxi Province, southeast China, ispresented. Coherent variations in δ18O and δ13Creveal that the climate in this part of China was dominantly wet between 5.3and 4.5kaBP and mostly dry between 4.5 and 3.57kaBP, interrupted by awet interval (4.2–3.9kaBP). A comparison with other records frommonsoonal China suggests that summer monsoon precipitation decreased innorthern China but increased in southern China during the 4.2kaBP event.We propose that the weakened East Asian summer monsoon controlled by thereduced Atlantic Meridional Overturning Circulation resulted in thiscontrasting distribution of monsoon precipitation between northern andsouthern China. During the 4.2kaBP event the rain belt remained longer atits southern position, giving rise to a pronounced humidity gradient betweennorthern and southern China.

     
    more » « less
  5. Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ 13 C) and oxygen (δ 18 O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia. 
    more » « less