Through human-aided dispersal over the last ~ 10,000 years, house mice (Mus musculus) have recently colonized diverse habitats across the globe, promoting the emergence of new traits that confer adaptive advantages in distinct environments. Despite their status as the premier mammalian model system, the impact of this demographic and selective history on the global patterning of disease-relevant trait variation in wild mouse populations is poorly understood. Here, we leveraged 154 whole-genome sequences from diverse wild house mouse populations to survey the geographic organization of functional variation and systematically identify signals of positive selection. We show that a significant proportion of wild mouse variation is private to single populations, including numerous predicted functional alleles. In addition, we report strong signals of positive selection at many genes associated with both complex and Mendelian diseases in humans. Notably, we detect a significant excess of selection signals at disease-associated genes relative to null expectations, pointing to the important role of adaptation in shaping the landscape of functional variation in wild mouse populations. We also uncover strong signals of selection at multiple genes involved in starch digestion, including Mgam and Amy1. We speculate that the successful emergence of the human-mouse commensalism may have been facilitated, in part, by dietary adaptations at these loci. Finally, our work uncovers multiple cryptic structural variants that manifest as putative signals of positive selection, highlighting an important and under-appreciated source of false-positive signals in genome-wide selection scans. Overall, our findings highlight the role of adaptation in shaping wild mouse genetic variation at human disease-associated genes. Our work also highlights the biomedical relevance of wild mouse genetic diversity and underscores the potential for targeted sampling of mice from specific populations as a strategy for developing effective new mouse models of both rare and common human diseases.
more »
« less
Human adaptation, demography and cattle domestication: an overview of the complexity of lactase persistence in Africa
Abstract Lactase persistence (LP) is a genetically-determined trait that is prevalent in African, European and Arab populations with a tradition of animal herding and milk consumption. To date, genetic analyses have identified several common variants that are associated with LP. Furthermore, data have indicated that these functional alleles likely have been maintained in pastoralist populations due to the action of recent selection, exemplifying the ongoing evolution of anatomically modern humans. Additionally, demographic history has also played a role in the geographic distribution of LP and associated alleles in Africa. In particular, the migration of ancestral herders and their subsequent admixture with local populations were integral to the spread of LP alleles and the culture of pastoralism across the continent. The timing of these demographic events was often correlated with known major environmental changes and/or the ability of domesticated cattle to resist/avoid infectious diseases. This review summarizes recent advances in our understanding of the genetic basis and evolutionary history of LP, as well as the factors that influenced the origin and spread of pastoralism in Africa.
more »
« less
- Award ID(s):
- 2021076
- PAR ID:
- 10292223
- Date Published:
- Journal Name:
- Human Molecular Genetics
- Volume:
- 30
- Issue:
- R1
- ISSN:
- 0964-6906
- Page Range / eLocation ID:
- R98 to R109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A long-standing enigma concerns the geographic and ecological origins of the intensively studied vinegar fly, Drosophila melanogaster. This globally distributed human commensal is thought to originate from sub-Saharan Africa, yet until recently, it had never been reported from undisturbed wilderness environments that could reflect its precommensal niche. Here, we document the collection of 288 D. melanogaster individuals from multiple African wilderness areas in Zambia, Zimbabwe, and Namibia. The presence of D. melanogaster in these remote woodland environments is consistent with an ancestral range in southern-central Africa, as opposed to equatorial regions. After sequencing the genomes of 17 wilderness-collected flies collected from Kafue National Park in Zambia, we found reduced genetic diversity relative to town populations, elevated chromosomal inversion frequencies, and strong differences at specific genes including known insecticide targets. Combining these genomes with existing data, we probed the history of this species’ geographic expansion. Demographic estimates indicated that expansion from southern-central Africa began ∼10,000 years ago, with a Saharan crossing soon after, but expansion from the Middle East into Europe did not begin until roughly 1,400 years ago. This improved model of demographic history will provide an important resource for future evolutionary and genomic studies of this key model organism. Our findings add context to the history of D. melanogaster, while opening the door for future studies on the biological basis of adaptation to human environments.more » « less
-
Abstract Understanding the movement of species’ ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco‐evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco‐evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco‐evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.more » « less
-
The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape.more » « less
-
Abstract Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple‐ and ancestral hawthorn‐infesting host races ofRhagoletis pomonella(Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.more » « less
An official website of the United States government

