Network tomography aims at estimating source–destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for Poisson traffic over networks operating under deterministic as well as random routing regimes. In this article, we expand Vardi's second-order moment matching rate estimation approach to higher-order cumulant matching with the goal of increasing the column rank of the mapping and consequently improving the rate estimation accuracy. We develop a systematic set of linear cumulant matching equations and express them compactly in terms of the Khatri–Rao product. Both least squares estimation and iterative minimum I-divergence estimation are considered. We develop an upper bound on the mean squared error (MSE) in least squares rate estimation from empirical cumulants. We demonstrate that supplementing Vardi's approach with the third-order empirical cumulant reduces its minimum averaged normalized MSE in rate estimation by almost 20% when iterative minimum I-divergence estimation was used.
more »
« less
Mixed Poisson traffic rate network tomography
We extend network tomography to traffic flows that are not necessarily Poisson random processes. This assumption has governed the field since its inception in 1996 by Y. Vardi. We allow the distribution of the packet count of each traffic flow in a given time interval to be a mixture of Poisson random variables. Both discrete as well as continuous mixtures are studied. For the latter case, we focus on mixed Poisson distributions with Gamma mixing distribution. As is well known, this mixed Poisson distribution is the negative binomial distribution. Other mixing distributions, such as Wald or the inverse Gaussian distribution can be used. Mixture distributions are overdispersed with variance larger than the mean. Thus, they are more suitable for Internet traffic than the Poisson model. We develop a second-order moment matching approach for estimating the mean traffic rate for each source-destination pair using least squares and the minimum I-divergence iterative procedure. We demonstrate the performance of the proposed approach by several numerical examples. The results show that the averaged normalized mean squared error in rate estimation is of the same order as in the classic Poisson based network tomography. Furthermore, no degradation in performance was observed when traffic rates are Poisson but Poisson mixtures are assumed.
more »
« less
- Award ID(s):
- 1717033
- PAR ID:
- 10292236
- Date Published:
- Journal Name:
- 55rd Annual Conference on Information Sciences and Systems (CISS 2021)
- Page Range / eLocation ID:
- 1-6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network tomography aims at estimating source-destination traffic rates from link traffic measurements. This inverse problem was formulated by Vardi in 1996 for independent Poisson traffic over networks operating under deterministic as well as random routing regimes. Vardi used a second-order moment matching approach to estimate the rates where a solution for the resulting linear matrix equation was obtained using an iterative minimum I-divergence procedure. Vardi’s second-order moment matching approach was recently extended to higher order cumulant matching approach with the goal of improving the rank of the system of linear equations. In this paper we go one step further and develop a moment generating function matching approach for rate estimation, and seek a least squares as well as an iterative minimum I-divergence solution of the resulting linear equations. We also specialize this approach to a characteristic function matching approach which exhibits some advantages. These follow from the fact that the characteristic function matching approach results in fewer conflicting equations involving the empirical estimates. We demonstrate that the new approach outperforms the cumulant matching approach while being conceptually simpler.more » « less
-
Evaluation of end-to-end network performance using realistic traffic models is a challenging problem in networking. The classical theory of queueing networks is feasible only under rather restrictive assumptions on the input traffic models and network elements. An alternative approach, first proposed in the late 1980s, is to impose deterministic bounds on the input traffic that can be used as a basis for a network calculus to compute end-to-end network delay bounds. Such deterministic bounds are inherently loose as they must accommodate worst case scenarios. Since the early 1990s, efforts have shifted to development of a stochastic network calculus to provide probabilistic end-to-end performance bounds. In this paper, we capitalize on the approach of stochastically bounded burstiness (SBB) which was developed for a general class of bounding functions, and was demonstrated for a bound that is based on a mixture distribution. We specialize the SBB bounds to bounds based on the class of phase-type distributions, which includes mixture distributions as a particular case. We develop the phase-type bounds and demonstrate their performance.more » « less
-
Singh, Mona (Ed.)Microbial associations are characterized by both direct and indirect interactions between the constituent taxa in a microbial community, and play an important role in determining the structure, organization, and function of the community. Microbial associations can be represented using a weighted graph (microbial network) whose nodes represent taxa and edges represent pairwise associations. A microbial network is typically inferred from a sample-taxa matrix that is obtained by sequencing multiple biological samples and identifying the taxa counts in each sample. However, it is known that microbial associations are impacted by environmental and/or host factors. Thus, a sample-taxa matrix generated in a microbiome study involving a wide range of values for the environmental and/or clinical metadata variables may in fact be associated with more than one microbial network. Here we consider the problem of inferring multiple microbial networks from a given sample-taxa count matrix. Each sample is a count vector assumed to be generated by a mixture model consisting of component distributions that are Multivariate Poisson Log-Normal. We present a variational Expectation Maximization algorithm for the model selection problem to infer the correct number of components of this mixture model. Our approach involves reframing the mixture model as a latent variable model, treating only the mixing coefficients as parameters, and subsequently approximating the marginal likelihood using an evidence lower bound framework. Our algorithm is evaluated on a large simulated dataset generated using a collection of different graph structures (band, hub, cluster, random, and scale-free).more » « less
-
We study the problem of learning a mixture model of non-parametric product distributions. The problem of learning a mixture model is that of finding the component distributions along with the mixing weights using observed samples generated from the mixture. The problem is well-studied in the parametric setting, i.e., when the component distributions are members of a parametric family - such as Gaussian distributions. In this work, we focus on multivariate mixtures of non-parametric product distributions and propose a two-stage approach which recovers the component distributions of the mixture under a smoothness condition. Our approach builds upon the identifiability properties of the canonical polyadic (low-rank) decomposition of tensors, in tandem with Fourier and Shannon-Nyquist sampling staples from signal processing. We demonstrate the effectiveness of the approach on synthetic and real datasets.more » « less
An official website of the United States government

