skip to main content

Title: Classification of apatite structures via topological data analysis: a framework for a ‘Materials Barcode’ representation of structure maps
Abstract This paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds.
Authors:
; ; ;
Award ID(s):
1640867
Publication Date:
NSF-PAR ID:
10292345
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Topological data analysis (TDA) is a tool from data science and mathematics that is beginning to make waves in environmental science. In this work, we seek to provide an intuitive and understandable introduction to a tool from TDA that is particularly useful for the analysis of imagery, namely, persistent homology. We briefly discuss the theoretical background but focus primarily on understanding the output of this tool and discussing what information it can glean. To this end, we frame our discussion around a guiding example of classifying satellite images from the sugar, fish, flower, and gravel dataset produced for the study of mesoscale organization of clouds by Rasp et al. We demonstrate how persistent homology and its vectorization, persistence landscapes, can be used in a workflow with a simple machine learning algorithm to obtain good results, and we explore in detail how we can explain this behavior in terms of image-level features. One of the core strengths of persistent homology is how interpretable it can be, so throughout this paper we discuss not just the patterns we find but why those results are to be expected given what we know about the theory of persistent homology. Our goal is that readersmore »of this paper will leave with a better understanding of TDA and persistent homology, will be able to identify problems and datasets of their own for which persistent homology could be helpful, and will gain an understanding of the results they obtain from applying the included GitHub example code.

    Significance Statement

    Information such as the geometric structure and texture of image data can greatly support the inference of the physical state of an observed Earth system, for example, in remote sensing to determine whether wildfires are active or to identify local climate zones. Persistent homology is a branch of topological data analysis that allows one to extract such information in an interpretable way—unlike black-box methods like deep neural networks. The purpose of this paper is to explain in an intuitive manner what persistent homology is and how researchers in environmental science can use it to create interpretable models. We demonstrate the approach to identify certain cloud patterns from satellite imagery and find that the resulting model is indeed interpretable.

    « less
  2. Abstract

    In pursuit of scientific discovery, vast collections of unstructured structural and functional images are acquired; however, only an infinitesimally small fraction of this data is rigorously analyzed, with an even smaller fraction ever being published. One method to accelerate scientific discovery is to extract more insight from costly scientific experiments already conducted. Unfortunately, data from scientific experiments tend only to be accessible by the originator who knows the experiments and directives. Moreover, there are no robust methods to search unstructured databases of images to deduce correlations and insight. Here, we develop a machine learning approach to create image similarity projections to search unstructured image databases. To improve these projections, we develop and train a model to include symmetry-aware features. As an exemplar, we use a set of 25,133 piezoresponse force microscopy images collected on diverse materials systems over five years. We demonstrate how this tool can be used for interactive recursive image searching and exploration, highlighting structural similarities at various length scales. This tool justifies continued investment in federated scientific databases with standardized metadata schemas where the combination of filtering and recursive interactive searching can uncover synthesis-structure-property relations. We provide a customizable open-source package (https://github.com/m3-learning/Recursive_Symmetry_Aware_Materials_Microstructure_Explorer) of thismore »interactive tool for researchers to use with their data.

    « less
  3. Recently a new feature representation framework based on a topological tool called persistent homology (and its persistence diagram summary) has gained much momentum. A series of methods have been developed to map a persistence diagram to a vector representation so as to facilitate the downstream use of machine learning tools. In these approaches, the importance (weight) of different persistence features are usually pre-set. However often in practice, the choice of the weight-functions hould depend on the nature of the specific data at hand. It is thus highly desirable to learn a best weight-function (and thus metric for persistence diagrams) from labelled data. We study this problem and develop a new weighted kernel, called WKPI, for persistence summaries, as well as an optimization framework to learn the weight (and thus kernel). We apply the learned kernel to the challenging task of graph classification, and show that our WKPI-based classification framework obtains similar or (sometimes significantly) better results than the best results from a range of previous graph classification frameworks on benchmark datasets.
  4. Abstract Background

    Interpretation of high-throughput gene expression data continues to require mathematical tools in data analysis that recognizes the shape of the data in high dimensions. Topological data analysis (TDA) has recently been successful in extracting robust features in several applications dealing with high dimensional constructs. In this work, we utilize some recent developments in TDA to curate gene expression data. Our work differs from the predecessors in two aspects: (1) Traditional TDA pipelines use topological signatures called barcodes to enhance feature vectors which are used for classification. In contrast, this work involves curating relevant features to obtain somewhat better representatives with the help of TDA. This representatives of the entire data facilitates better comprehension of the phenotype labels. (2) Most of the earlier works employ barcodes obtained using topological summaries as fingerprints for the data. Even though they are stable signatures, there exists no direct mapping between the data and said barcodes.

    Results

    The topology relevant curated data that we obtain provides an improvement in shallow learning as well as deep learning based supervised classifications. We further show that the representative cycles we compute have an unsupervised inclination towards phenotype labels. This work thus shows that topological signatures are able tomore »comprehend gene expression levels and classify cohorts accordingly.

    Conclusions

    In this work, we engender representative persistent cycles to discern the gene expression data. These cycles allow us to directly procure genes entailed in similar processes.

    « less
  5. Topological Data Analysis is a growing area of data science, which aims at computing and characterizing the geometry and topology of data sets, in order to produce useful descriptors for subsequent statistical and machine learning tasks. Its main computational tool is persistent homology, which amounts to track the topological changes in growing families of subsets of the data set itself, called filtrations, and encode them in an algebraic object, called persistence module. Even though algorithms and theoretical properties of modules are now well-known in the single-parameter case, that is, when there is only one filtration to study, much less is known in the multi-parameter case, where several filtrations are given at once. Though more complicated, the resulting persistence modules are usually richer and encode more information, making them better descriptors for data science. In this article, we present the first approximation scheme, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence, for computing and decomposing general multi-parameter persistence modules. Our algorithm has controlled complexity and running time, and works in arbitrary dimension, i.e., with an arbitrary number of filtrations. Moreover, when restricting to specific classes of multi-parameter persistence modules, namelymore »the ones that can be decomposed into intervals, we establish theoretical results about the approximation error between our estimate and the true module in terms of interleaving distance. Finally, we present empirical evidence validating output quality and speed-up on several data sets.« less