Faust, Kasey; Kanjanabootra, Sittimont
(Ed.)
Architectural, Engineering, and Construction (AEC) project teams adopt different methods to facilitate collaboration to achieve sustainability goals, which requires a high level of expertise integration. Tracking expertise flows in interdisciplinary and inter-organizational project networks is challenging because of the unique project nature, fluid expertise boundaries, and varying project requirements. It can be even more difficult considering sustainability outcomes, due to the need for high-level expertise integration. Social network approach addresses the integration and information flow dynamics. However, there is a knowledge gap regarding what network characteristics are favorable for improved sustainability outcomes in AEC projects, how they evolve during delivery, and how relevant expertise flows through project networks. To respond to the need in the literature, this study aims to develop a holistic understanding of AEC project team networks and associated characteristics that allow experts to exchange knowledge to optimize sustainability outcomes for built environment projects. We longitudinally collected e-mail exchange, observational, and archival data during the design phase of an AEC case study project and performed Social Network Analysis (SNA) bolstered by mixed methods. Results suggest that network topology matters for AEC project teams. In other words, understanding the interactions between components of a network (e.g., expertise areas represented and distributed in the network and the number of boundary spanners) is as important as the network parameters for better sustainability outcomes.
more »
« less
An official website of the United States government

