skip to main content

Title: Resilience of phytoplankton dynamics to trophic cascades and nutrient enrichment
Resilience was compared for alternate states of phytoplankton pigment concentration in two multiyear whole-lake experiments designed to shift the manipulated ecosystem between alternate states. Mean exit time, the average time between threshold crossings, was calculated from automated measurements every 5 min during summer stratification. Alternate states were clearly identified, and equilibria showed narrow variation in bootstrap analysis of uncertainty. Mean exit times ranged from 13 to 290 h. In the reference ecosystem, Paul Lake, mean exit time of the low-pigment state was about 100 h longer than mean exit time of the high-pigment state. In the manipulated ecosystem, Peter Lake, mean exit time of the high-pigment state exceeded that of the low-pigment state by 30 h in the cascade experiment. In the enrichment experiment mean exit time of the low-pigment state was longer than that of the high-pigment state by about 100 h. Mean exit time is a useful measure of resilience for stochastic ecosystems where high-frequency measurements are made by consistent methods over the full range of ecosystem states.
; ; ; ;
Award ID(s):
1455461 1754712 1753854
Publication Date:
Journal Name:
Limnology and Oceanography
Sponsoring Org:
National Science Foundation
More Like this
  1. Phytoplankton assembly dynamics in lakes are highly sensitive to variability in climate drivers and resulting physicochemical changes in lake water columns. As climate change increases the frequency of major precipitation events and droughts, many lakes experience increased inputs of colored dissolved organic carbon (CDOC) and nutrients. How these CDOC-related changes in resources, transparency, and thermal stability affect phytoplankton assemblages, succession, and resilience is understudied, particularly in subtropical lakes. Here, we used time series, multivariate, and trait-based functional redundancy analyses to elucidate the roles of phytoplankton in ecosystem resilience and determine potential drivers of assemblage shifts in a subtropical monomictic lake with fluctuating CDOC inputs (Lake Annie, Highlands County, Florida, USA). We found that phytoplankton assemblages and successional patterns differed between two dark-water states (late 2005–mid-2007, late 2012–2019) bracketing a clear-water state (mid-2007–late 2012), caused by shifting CDOC and nutrient concentrations associated with oscillating groundwater levels. Diatoms (Bacillariophyta), which were dominant during the two dark-water states, nearly disappeared and were replaced by synurophytes during the clear-water state. Assemblages had greater interannual consistency in the dark-water states, while mean functional redundancy decreased in the clear-water state. Seasonal phytoplankton successional changes were also more pronounced and synchronized with seasonal hydrologic shifts in themore »dark-water states. Multiyear assemblage shifts occurred more quickly in clear-to-dark than dark-to-clear state transitions, suggesting phytoplankton in dark-water states may be more resistant to state transitions or even contribute to dark-water state resilience via feedback loops.« less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. We examined the patterns of propagule recruitment to assess the timescale and trajectory of succession and the possible roles of physical factors in controlling benthic community structure in a shallow High Arctic kelp bed in the Beaufort Sea, Alaska. Spatial differences in established epilithic assemblages were evaluated against static habitat attributes (depth, distance from river inputs) and environmental factors (temperature, salinity, current speed, underwater light) collected continuously over 2–6 years. Our measurements revealed that bottom waters remained below freezing (mean winter temperatures ∼−1.8°C) and saline (33–36) with negligible light levels for 8–9 months. In contrast, the summer open water period was characterized by variable salinities (22–36), higher temperatures (up to 8–9°C) and measurable irradiance (1–8 mol photons m –2 day –1 ). An inshore, near-river site experienced strong, acute, springtime drops in salinity to nearly 0 in some years. The epilithic community was dominated by foliose red algae (47–79%), prostrate kelps (2–19%), and crustose coralline algae (0–19%). Strong spatial distinctions among sites included a positive correlation between cover by crustose coralline algae and distance to river inputs, but we found no significant relationships between multi-year means of physical factors and functional groups. Low rates of colonization and the very slowmore »growth rates of recruits are the main factors that contribute to prolonged community development, which augments the influence of low-frequency physical events over local community structure. Mortality during early succession largely determines crustose coralline algal and invertebrate prevalence in the established community, while kelp seem to be recruitment-limited. On scales > 1 m, community structure varies with bathymetry and exposure to freshwater intrusion, which regulate frequency of primary and physiological disturbance. Colonization rates (means of 3.3–69.9 ind. 100 cm –1 year –1 site –1 ) were much lower than studies in other Arctic kelp habitats, and likely reflect the nature of a truly High Arctic environment. Our results suggest that community development in the nearshore Beaufort Sea occurs over decades, and is affected by combinations of recruitment limitation, primary disturbance, and abiotic stressors. While seasonality exerts strong influence on Arctic systems, static habitat characteristics largely determine benthic ecosystem structure by integrating seasonal and interannual variability over timescales longer than most ecological studies.« less
  4. The primary objectives of International Ocean Discovery Program (IODP) Expedition 367/368 to the northern South China Sea (SCS) margin were to (1) examine its history of continental breakup and (2) compare it with other nonvolcanic or magma-poor rifted margins with the broader goal of testing models for continental breakup. A secondary objective was to further our understanding of the paleoceanographic and environmental development of the SCS and southeast Asia during the Cenozoic. Four primary sites were selected for the overall program: one in the outer margin high (OMH) and three seaward of the OMH on distinct, margin-parallel basement ridges. These three ridges are informally labeled A, B, and C and are located in the continent–ocean transition (COT) zone ranging from the OMH to the interpreted steady-state oceanic crust (Ridge C) of the SCS. The main scientific objectives include the following: Determining the nature of the basement in crustal units across the COT of the SCS that are critical to constrain style of rifting, Constraining the time interval from initial crustal extension and plate rupture to the initial generation of igneous ocean crust, Constraining vertical crustal movements during breakup, and Examining the nature of igneous activity from rifting to seafloor spreading.more »In addition, the sediment cores from the drill sites targeting primarily tectonic and basement objectives will provide information on the Cenozoic regional environmental development of the Southeast Asia margin. Site U1499 on Ridge A and Site U1500 on Ridge B were drilled during Expedition 367. Expedition 368 was planned to drill at two primary sites (U1501 and U1503) at the OMH and Ridge C, respectively, but based on drilling results from Expedition 367, Expedition 368 chose to insert an alternate site on Ridge A (Site U1502). In addition, Expedition 368 added two more sites on the OMH (Sites U1504 and U1505). Expedition 367/368 completed operations at six of the seven sites (U1499–U1502, U1504, and U1505). Site U1503, however, was not completed beyond casing without coring to 990 m because of mechanical problems with the drilling equipment that prevented the expedition, after 25 May 2017, from operating with a drill string longer than 3400 m. New alternate Site U1504, proposed during Expedition 367, met this condition. Original Site U1505 also met the operational constraints of the 3400 m drill string (total) and was an alternate site for the already-drilled Site U1501. At Site U1499, we cored to 1081.8 m in 22.1 days with 52% recovery and then logged downhole data from 655 to 1020 m. In 31 days at Site U1500, we penetrated to 1529 m, cored a total of 1012.8 m with 37% recovery, and collected log data from 842 to 1133 m. At Site U1501, we cored to 697.1 m in 9.4 days with 78.5% recovery. We also drilled ahead for 433.5 m in Hole U1501D and then logged downhole data from 78.3 to 399.3 m. In 19.3 days at Site U1502, we penetrated 1679.0 m in Holes U1502A (758 m) and U1502B (921 m), set 723.7 m of casing and cored a total of 576.3 m with 53.5% recovery, and collected downhole log data from 785.3 to 875.3 m and seismic data through the 10¾ inch casing. At Site U1503, we penetrated 995.1 m and set 991.5 m of 10¾ inch casing, but no cores were taken because of a mechanical problem with the drawworks. At Site U1504, we took 40 rotary core barrel (RCB) cores over two holes. The cored interval between both holes was 277.3 m with 26.8% recovery. An 88.2 m interval was drilled in Hole U1504B. At Site U1505, we cored 668.0 m with 101.1% recovery. Logging data was collected from 80.1 to 341.2 m. Operations at this site covered 6.1 days. Except for Sites U1503 and U1505, all sites were drilled to acoustic basement. A total of 6.65 days were lost due to mechanical breakdown or waiting on spare supplies for repair of drilling equipment, but drilling options were severely limited from 25 May to the end of the expedition by the defective drawworks limiting deployment of drill string longer than 3400 m. At Site U1499, coring ~200 m into the interpreted acoustic basement sampled sedimentary rocks, possibly including early Miocene chalks underlain by Oligocene polymict breccias and poorly cemented gravels of unknown age comprising sandstone pebbles and cobbles. Preliminary structural and lithologic analysis suggests that the gravels might be early to late synrift sediment. At Site U1500, the main seismic reflector corresponds to the top of a basalt sequence at ~1379.1 m. We cored 149.90 m into this volcanic package and recovered 114.92 m (77%) of sparsely to moderately plagioclase-phyric basalt comprising numerous lava flows, including pillow lavas with glass, chilled margins, altered veins, hyaloclastites, and minor sediment. Preliminary geochemical analyses indicate that the basalt is tholeiitic. Sampling of the Pleistocene to lower Miocene sedimentary section at Sites U1499 and U1500 was not continuous for two reasons. First, there was extremely poor recovery in substantial intervals interpreted to be poorly lithified sands, possibly turbidites. Second, we chose to drill down without coring in some sections at Site U1500 to ensure sufficient time to achieve this site’s high-priority deep drilling objectives. The upper Miocene basin sequence, which consists of interbedded claystone, siltstone, and sandstone can be correlated between the two sites by seismic stratigraphic mapping and biostratigraphy. At Site U1501 on the OMH, coring ~45 m into the acoustic basement sampled prerift(?) deposits comprising sandstone to conglomerate of presumed Mesozoic age. These deposits are overlain by siliciclastic synrift sediments of Eocene to Oligocene age followed by primarily carbonaceous postrift sediments of early Miocene to Pleistocene age. Site U1502 on Ridge A was cased to 723.7 m. No coring was attempted shallower than 380 m to save operational time and because of low expectations for core recovery in the upper Plio–Pleistocene sequence. At this site, we recovered 180 m of hydrothermally altered brecciated basalts comprising sheet and pillow lavas below deep-marine sediments of Oligocene to late Miocene age. At Site U1503 on Ridge C, 991.5 m of casing was installed in preparation for the planned deep drilling to ~1800 m. No coring was performed due to mechanical failures, and the site was abandoned without further activity except for installation of a reentry cone. Coring at Site U1504 on the OMH, located ~45 km east of Site U1501, recovered mostly foliated, greenschist facies metamorphic rocks below late Eocene(?) carbonate rocks (partly reef debris) and early Miocene to Pleistocene sediments. At Site U1505, we cored to 480.15 m through Pleistocene to late Oligocene mainly carbonaceous ooze followed at depth by early Oligocene siliciclastic sediments. Efforts were made at every drill site to correlate the core with the seismic data and seismic stratigraphic unconformities interpreted in the Eocene to Plio–Pleistocene sedimentary sequence prior to drilling. The predrilling interpretation of ages of these unconformities was in general confirmed by drilling results, although some nontrivial corrections can be expected from detailed postexpedition work on integrating seismic stratigraphic interpretations with detailed bio- and lithostratigraphy. As a result of the limited length of drill string that could be deployed during the later part of Expedition 368, the secondary expedition objectives addressing the environmental history of the SCS and Southeast Asia received more focus than originally planned, allowing Site U1505 (alternate to Site U1501) to be included. Despite this change in focus, Expedition 367/368 provided solid evidence for a process of breakup that included vigorous synrift magmatism as opposed to the often-favored interpretation of the SCS margin as a magma-starved margin or a margin possibly overprinted at a much later stage by plume-related magmatism. In this broader perspective, Expedition 367/368 accomplished a fundamental objective of the two-expedition science program.« less
  5. The environmental conditions experienced by microbial communities are rarely fully simulated in the laboratory. Researchers use experimental containers (“bottles”), where natural samples can be manipulated and evaluated. However, container-based methods are subject to “bottle effects”: changes that occur when enclosing the plankton community that are often times unexplained by standard measures like pigment and nutrient concentrations. We noted variability in a short-term, nutrient amendment experiment during a 2019 Lake Erie, Microcystis spp. bloom. We observed changes in heterotrophic bacteria activity (transcription) on a time-frame consistent with a response to experimental changes in nutrient availability, demonstrating how the often overlooked microbiome of cyanobacterial blooms can be altered. Samples processed at the time of collection (T0) contained abundant transcripts from Bacteroidetes, which reduced in abundance during incubation in all bottles, including controls. Significant biological variability in the expression of Microcystis -infecting phage was observed between replicates, with phosphate-amended treatments showing a 10-fold variation. The expression patterns of Microcystis -infecting phage were significantly correlated with ∼35% of Microcystis -specific functional genes and ∼45% of the cellular-metabolites measured across the entire microbial community, suggesting phage activity not only influenced Microcystis dynamics, but the biochemistry of the microbiome. Our observations demonstrate how natural heterogeneity amongmore »replicates can be harnessed to provide further insight on virus and host ecology.« less