skip to main content


Title: Location probability learning in 3-dimensional virtual search environments
Abstract When a visual search target frequently appears in one target-rich region of space, participants learn to search there first, resulting in faster reaction time when the target appears there than when it appears elsewhere. Most research on this location probability learning (LPL) effect uses 2-dimensional (2D) search environments that are distinct from real-world search contexts, and the few studies on LPL in 3-dimensional (3D) contexts include complex visual cues or foraging tasks and therefore may not tap into the same habit-like learning mechanism as 2D LPL. The present study aimed to establish a baseline evaluation of LPL in controlled 3D search environments using virtual reality. The use of a virtual 3D search environment allowed us to compare LPL for information within a participant’s initial field of view to LPL for information behind participants, outside of the initial field of view. Participants searched for a letter T on the ground among letter Ls in a large virtual space that was devoid of complex visual cues or landmarks. The T appeared in one target-rich quadrant of the floor space on half of the trials during the training phase. The target-rich quadrant appeared in front of half of the participants and behind the other half. LPL was considerably greater in the former condition than in the latter. This reveals an important constraint on LPL in real-world environments and indicates that consistent search patterns and consistent egocentric spatial coding are essential for this form of visual statistical learning in 3D environments.  more » « less
Award ID(s):
1734815
PAR ID:
10292728
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Cognitive Research: Principles and Implications
Volume:
6
Issue:
1
ISSN:
2365-7464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A “virtual mirror” is a promising interface for virtual or augmented reality applications in which users benefit from seeing themselves within the environment, such as serious games for rehabilitation exercise or biological education. While there is extensive work analyzing pointing and providing assistance for first-person perspectives, mirrored third-person perspectives have been minimally considered, limiting the quality of user interactions in current virtual mirror applications. We address this gap with two user studies aimed at understanding pointing motions with a mirror view and assessing visual cues that assist pointing. An initial two-phase preliminary study had users tune and test nine different visual aids. This was followed by in-depth testing of the best four of those visual aids compared with unaided pointing. Results give insight into both aided and unaided pointing with this mirrored third-person view, and compare visual cues. We note a pattern of consistently pointing far in front of targets when first introduced to the pointing task, but that initial unaided motion improves after practice with visual aids. We found that the presence of stereoscopy is not sufficient for enhancing accuracy, supporting the use of other visual cues that we developed. We show that users perform pointing differently when pointing behind and in front of themselves. We finally suggest which visual aids are most promising for 3D pointing in virtual mirror interfaces.

     
    more » « less
  2. null (Ed.)
    Teleporting interfaces are widely used in virtual reality applications to explore large virtual environments. When teleporting, the user indicates the intended location in the virtual environment and is instantly transported, typically without self-motion cues. This project explored the cost of teleporting on the acquisition of survey knowledge (i.e., a ”cognitive map”). Two teleporting interfaces were compared, one with and one without visual and body-based rotational self-motion cues. Both interfaces lacked translational self-motion cues. Participants used one of the two teleporting interfaces to find and study the locations of six objects scattered throughout a large virtual environment. After learning, participants completed two measures of cognitive map fidelity: an object-to-object pointing task and a map drawing task. The results indicate superior spatial learning when rotational self-motion cues were available. Therefore, virtual reality developers should strongly consider the benefits of rotational self-motion cues when creating and choosing locomotion interfaces. 
    more » « less
  3. Emerging technologies offer the potential to expand the domain of the future workforce to extreme environments, such as outer space and alien terrains. To understand how humans navigate in such environments that lack familiar spatial cues this study examined spatial perception in three types of environments. The environments were simulated using virtual reality. We examined participants’ ability to estimate the size and distance of stimuli under conditions of minimal, moderate, or maximum visual cues, corresponding to an environment simulating outer space, an alien terrain, or a typical cityscape, respectively. The findings show underestimation of distance in both the maximum and the minimum visual cue environment but a tendency for overestimation of distance in the moderate environment. We further observed that depth estimation was substantially better in the minimum environment than in the other two environments. However, estimation of height was more accurate in the environment with maximum cues (cityscape) than the environment with minimum cues (outer space). More generally, our results suggest that familiar visual cues facilitated better estimation of size and distance than unfamiliar cues. In fact, the presence of unfamiliar, and perhaps misleading visual cues (characterizing the alien terrain environment), was more disruptive than an environment with a total absence of visual cues for distance and size perception. The findings have implications for training workers to better adapt to extreme environments. 
    more » « less
  4. Motor learning in visuomotor adaptation tasks results from both explicit and implicit processes, each responding differently to an error signal. Although the motor output side of these processes has been extensively studied, the visual input side is relatively unknown. We investigated if and how depth perception affects the computation of error information by explicit and implicit motor learning. Two groups of participants made reaching movements to bring a virtual cursor to a target in the frontoparallel plane. The Delayed group was allowed to reaim and their feedback was delayed to emphasize explicit learning, whereas the camped group received task-irrelevant clamped cursor feedback and continued to aim straight at the target to emphasize implicit adaptation. Both groups played this game in a highly detailed virtual environment (depth condition), leveraging a cover task of playing darts in a virtual tavern, and in an empty environment (no-depth condition). The delayed group showed an increase in error sensitivity under depth relative to no-depth. In contrast, the clamped group adapted to the same degree under both conditions. The movement kinematics of the delayed participants also changed under the depth condition, consistent with the target appearing more distant, unlike the Clamped group. A comparison of the delayed behavioral data with a perceptual task from the same individuals showed that the greater reaiming in the depth condition was consistent with an increase in the scaling of the error distance and size. These findings suggest that explicit and implicit learning processes may rely on different sources of perceptual information. NEW & NOTEWORTHY We leveraged a classic sensorimotor adaptation task to perform a first systematic assessment of the role of perceptual cues in the estimation of an error signal in the 3-D space during motor learning. We crossed two conditions presenting different amounts of depth information, with two manipulations emphasizing explicit and implicit learning processes. Explicit learning responded to the visual conditions, consistent with perceptual reports, whereas implicit learning appeared to be independent of them. 
    more » « less
  5. Virtual reality (VR) computer interfaces show promise for improving societal communication and representation of information due to their unique ability to be placed spatially around the user in three-dimensional (3D) space. This opens new possibilities for presentation and user interaction with the target information, and may be especially impactful for the education of science, technology, engineering, and mathematics (STEM) professionals. Simulations and visualizations have been shown in research studies to improve the efficiency of STEM learners compared to the less sensorimotor rich learning mediums of live instruction and textbook reading. Yet, learning science research into immersive computer simulation environments for educational applications remains limited. To address this research gap, we analyzed a fundamental VR interface capability, virtual environmental traversal, and its impact on participants' learning. We altered the traversal ability between two groups of STEM learners within the same virtual environment and compared their performance. Findings point that VR computer interfaces, regardless of environmental traversal, are suitable STEM learning environments, but that environmental traversal can increase learning efficiency. 
    more » « less