skip to main content


Title: Online administration of research-based assessments
Research-based assessments (RBAs; e.g., the Force Concept Inventory) that measure student content knowledge, attitudes, or identities have played a major role in transforming physics teaching practices. RBAs offer instructors a standardized method for empirically investigating the efficacy of their instructional practices and documenting the impacts of course transformations. Unlike course exams, the common usage of standardized RBAs across institutions uniquely supports instructors to compare their student outcomes over time or against multi-institutional data sets. While the number of RBAs and RBA-using instructors has increased over the last three decades, barriers to administering RBAs keep many physics instructors from using them.1,2 To mitigate these barriers, we have created full-service online RBA platforms (i.e., the Learning About STEM Student Outcomes [LASSO],3 Colorado Learning Attitudes About Science Survey for Experimental Physics [E-CLASS],4 and Physics Lab Inventory of Critical thinking [PLIC]5 platforms) that host, administer, score, and analyze RBAs. These web-based platforms can make it easier for instructors to use RBAs, especially as many courses have been forced to transition to online instruction. We hope that this editorial can serve as a guide for instructors considering administering RBAs online. In what follows, we examine common barriers to using RBAs, how online administration can remove those barriers, and the research into online administration of RBAs. In the supplementary material,6 we also include a practical how-to for administering RBAs online and sample student email wording.  more » « less
Award ID(s):
1734006
NSF-PAR ID:
10292756
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
American journal of physics
Volume:
89
Issue:
7
ISSN:
1943-2909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Research-based assessments (RBAs; e.g., the Force Concept Inventory) that measure student content knowledge, attitudes, or identities have played a major role in transforming physics teaching practices. RBAs offer instructors a standardized method for empirically investigating the efficacy of their instructional practices and documenting the impacts of course transformations. Unlike course exams, the common usage of standardized RBAs across institutions uniquely supports instructors to compare their student outcomes over time or against multi-institutional data sets. While the number of RBAs and RBA-using instructors has increased over the last three decades, barriers to administering RBAs keep many physics instructors from using them.1,2 To mitigate these barriers, we have created full-service online RBA platforms (i.e., the Learning About STEM Student Outcomes [LASSO],3 Colorado Learning Attitudes About Science Survey for Experimental Physics [E-CLASS],4 and Physics Lab Inventory of Critical thinking [PLIC]5 platforms) that host, administer, score, and analyze RBAs. These web-based platforms can make it easier for instructors to use RBAs, especially as many courses have been forced to transition to online instruction. We hope that this editorial can serve as a guide for instructors considering administering RBAs online. In what follows, we examine common barriers to using RBAs, how online administration can remove those barriers, and the research into online administration of RBAs. In the supplementary material,6 we also include a practical how-to for administering RBAs online and sample student email wording. 
    more » « less
  2. Research-based assessments (RBAs), such as the Force Concept Inventory, have played central roles in many course transformations from traditional lecture-based instruction to research-based teaching methods. In order to support instructors in assessing their courses, the online Learning About STEM Student Outcomes (LASSO) platform simplifies administering, scoring, and interpreting RBAs. Reducing the barriers to using RBAs will support more instructors in objectively assessing the efficacy of their courses and, subsequently, transforming their courses to improve student outcomes. The purpose of this study was to investigate the extent to which RBAs administered online and outside of class with the LASSO platform provided equivalent data to tradi- tional paper and pencil tests administered in class. Research indicates that these two modes of administering assessments provide equivalent data for graded exams that are administered in class. However, little research has focused on ungraded (low-stakes) exams that are administered outside of class. We used an experimental design to investigate the differences between these two test modes. Results indicated that the LASSO platform provided equivalent data to paper and pencil tests. 
    more » « less
  3. This study investigates differences in student participation rates between in-class and online administrations of research-based assessments. A sample of 1,310 students from 25 sections of 3 different introductory physics courses over two semesters were instructed to complete the CLASS attitudinal survey and the concept inventory relevant to their course, either the FCI or the CSEM. Each student was randomly assigned to take one of the surveys in class and the other survey online at home using the Learning About STEM Student Outcomes (LASSO) platform. Results indicate large variations in participation rates across both test conditions (online and in class). A hierarchical generalized linear model (HGLM) of the student data utilizing logistic regression indicates that student grades in the course and faculty assessment administration practices were both significant predictors of student participation. When the recommended online assessments administration practices were implemented, participation rates were similar across test conditions. Implications for student and course assessment methodologies will be discussed. 
    more » « less
  4. This study investigates differences in student responses to in-class and online administrations of the Force Concept Inventory (FCI), Conceptual Survey of Electricity and Magnetism (CSEM), and the Colorado Learning Attitudes about Science Survey (CLASS). Close to 700 physics students from 12 sections of three different courses were instructed to complete the concept inventory relevant to their course, either the FCI or CSEM, and the CLASS. Each student was randomly assigned to take one of the surveys in class and the other survey online using the LA Supported Student Outcomes (LASSO) system hosted by the Learning Assistant Alliance (LAA). We examine how testing environments and instructor practices affect participation rates and identify best practices for future use. 
    more » « less
  5. A central goal of the Learning Assistant (LA) model is to improve students’ learning of science through the transformation of instructor practices. There is minimal existing research on the impact of college physics instructor experiences on their effectiveness. To investigate the association between college introductory physics instructors’ experiences with and without LAs and student learning, we drew on data from the Learning About STEM Student Outcomes (LASSO) database. The LASSO database provided us with student-level data (concept inventory scores and demographic data) for 4,365 students and course-level data (instructor experience and course features) for the students’ 93 mechanics courses. We performed Hierarchical Multiple Imputation to impute missing data and Hierarchical Linear Modeling to nest students within courses when modeling the associations be- tween instructor experience and student learning. Our models predict that instructors’ effectiveness decreases as they gain experience teaching without LAs. However, LA supported environments appear to remediate this decline in effectiveness as instructor effectiveness is maintained while they gain experience teaching with LAs. 
    more » « less