skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lack of neophobic responses to color in a jumping spider that uses color cues when foraging (Habronattus pyrrithrix)
Chemically defended prey often advertise their toxins with bright and conspicuous colors. To understand why such colors are effective at reducing predation, we need to understand the psychology of key predators. In bird predators, there is evidence that individuals avoid novelty—including prey of novel colors (with which they have had no prior experience). Moreover, the effect of novelty is sometimes strongest for colors that are typically associated with aposematic prey (e.g., red, orange, yellow). Given these findings in the bird literature, color neophobia has been argued to be a driving force in the evolution of aposematism. However, no studies have yet asked whether invertebrate predators respond similarly to novel colors. Here, we tested whether naive lab-raised jumping spiders ( Habronattus pyrrithrix ) exhibit similar patterns of color neophobia to birds. Using color-manipulated living prey, we first color-exposed spiders to prey of two out of three colors (blue, green, or red), with the third color remaining novel. After this color exposure phase, we gave the spiders tests where they could choose between all three colors (two familiar, one novel). We found that H . pyrrithrix attacked novel and familiar-colored prey at equal rates with no evidence that the degree of neophobia varied by color. Moreover, we found no evidence that either prey novelty nor color (nor their interaction) had an effect on how quickly prey was attacked. We discuss these findings in the context of what is known about color neophobia in other animals and how this contributes to our understanding of aposematic signals.  more » « less
Award ID(s):
1831751
PAR ID:
10292949
Author(s) / Creator(s):
; ;
Editor(s):
Mettke-Hofmann, Claudia
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
7
ISSN:
1932-6203
Page Range / eLocation ID:
e0254865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Multimodal warning displays often pair one signal modality (odor) with a second modality (color) to avoid predation. Experiments with bird predators suggest these signal components interact synergistically, with aversive odors triggering otherwise hidden aversions to particular prey colors. In a recent study, this phenomenon was found in a jumping spider ( Habronattus trimaculatus ), with the defensive odor from a coreid bug ( Acanthocephala femorata ) triggering an aversion to red. Here, we explore how generalizable this phenomenon is by giving H. trimaculatus the choice between red or black prey in the presence or absence of defensive odors secreted from (1) eastern leaf-footed bugs ( Leptoglossus phyllopus , Hemiptera), (2) grass stinkbugs ( Mormidea pama , Hemiptera), (3) Asian ladybird beetles ( Harmonia axyridis , Coleoptera), and (4) eastern lubber grasshoppers ( Romalea microptera , Orthoptera). As expected, in the presence of the hemipteran odors, spiders were less likely to attack red prey (compared to no odor). Unexpectedly, the beetle and grasshopper odors did not bias spiders away from red. Our results with the hemipteran odors were unique to red; follow-up experiments indicated that these odors did not affect biases for/against green prey. We discuss our findings in the context of generalized predator foraging behavior and the functions of multimodal warning displays. 
    more » « less
  2. Abstract Aposematic signals often allow chemically defended prey to avoid attack from generalist predators, including jumping spiders. However, not all individual predators in a population behave in the same way. Here, in laboratory trials, we document that most individualPhidippus regiusjumping spiders attack and reject chemically defended milkweed bugs (Oncopeltus fasciatus), immediately releasing them unharmed. However, a small number of individuals within the population kill and completely consume these presumably toxic prey items. This phenomenon was infrequent with only 14% of our sample (17/122) consuming the milkweed bugs over the course of the study. Individuals that killed and consumed bugs often did so repeatedly; specifically, individuals that consumed a bug in their first test were more likely to kill a bug in their second test and also tended to consume them again. We explored what might drive some (but not all) individuals to consume these bugs and found that neither sex, sexual maturity, body size, laboratory housing type, nor being wild‐caught or being laboratory‐reared, predicted milkweed bug consumption. Consuming bugs had no negative effects on spider mass or body condition; contrary to expectations, individuals that consumed milkweed bugs actually gained more body mass and increased in body condition. We discuss potential behavioural and physiological variation between individuals that may drive these rare behaviours and the implications for the evolution of prey defences. 
    more » « less
  3. Abstract Antagonistic coevolution between natural enemies can produce highly exaggerated traits, such as prey toxins and predator resistance. This reciprocal process of adaptation and counter‐adaptation may also open doors to other evolutionary novelties not directly involved in the phenotypic interface of coevolution. We tested the hypothesis that predator–prey coevolution coincided with the evolution of conspicuous coloration on resistant predators that retain prey toxins. In western North America, common garter snakes (Thamnophis sirtalis) have evolved extreme resistance to tetrodotoxin (TTX) in the coevolutionary arms race with their deadly prey, Pacific newts (Tarichaspp.). TTX‐resistant snakes can retain large amounts of ingested TTX, which could serve as a deterrent against the snakes' own predators if TTX toxicity and resistance are coupled with a conspicuous warning signal. We evaluated whether arms race escalation covaries with bright red coloration in snake populations across the geographic mosaic of coevolution. Snake colour variation departs from the neutral expectations of population genetic structure and covaries with escalating clines of newt TTX and snake resistance at two coevolutionary hotspots. In the Pacific Northwest, bright red coloration fits an expected pattern of an aposematic warning to avian predators: TTX‐resistant snakes that consume highly toxic newts also have relatively large, reddish‐orange dorsal blotches. Snake coloration also seems to have evolved with the arms race in California, but overall patterns are less intuitively consistent with aposematism. These results suggest that interactions with additional trophic levels can generate novel traits as a cascading consequence of arms race coevolution across the geographic mosaic. 
    more » « less
  4. Monarch butterfly (Danaus plexippus L.) declines in eastern North America have prompted milkweed host plant restoration efforts in non-agricultural grasslands. However, grasslands harbor predator communities that exert high predation pressure on monarch eggs and larvae. While diurnal monarch predators are relatively well known, no studies have investigated the contribution of nocturnal monarch predators. We used video cameras to monitor sentinel monarch eggs and fourth instars on milkweed in southern Michigan to identify predators and determine if nocturnally-active species impose significant predation pressure. We observed ten arthropod taxa consuming monarch eggs and larvae, with 74% of egg predation events occurring nocturnally. Taxa observed attacking monarch eggs included European earwigs (Forficula auricularia L.), tree crickets (Oecanthus sp.), lacewing larvae (Neuroptera), plant bugs (Miridae), small milkweed bugs (Lygaeus kalmii Stal), ants (Formicidae), spiders (Araneae: Salticidae and other spp.), harvestmen (Opiliones), and velvet mites (Trombidiformes: Trombidiidae). Larvae were attacked by ground beetles (Calleida sp.), jumping spiders (Araneae: Salticidae), and spined soldier bugs (Podisus maculiventris Say). Our findings provide important information about monarch predator-prey interactions that could be used to develop strategies to conserve monarchs through reducing predation on early life stages. 
    more » « less
  5. Abstract Neophobia is an animal's avoidance of novelty. Animals tend to respond to novel objects by increasing their latency to approach the objects, and they eventually habituate after repeated exposure by attenuating this increased approach latency. Interestingly, the physiological stress response does not appear to have a causal link to neophobia, although acute stress can prevent animals from habituating to novel objects, possibly through a permissive effect. Chronic stress can induce an anxiety‐like state in animals, while often disrupting the ability to respond to acute stress. We thus hypothesized that chronic stress may increase neophobia and tested this by inducing chronic stress in wild‐caught European starlings (Sturnus vulgaris). Four distinct anthropogenic stressors were administered daily for 30 min each in a randomized order for 21 days. We then evaluated whether exposure to chronic stress altered the latency to approach a novel object placed on or near a food dish presented after overnight fasting. Chronically stressed birds and nonstressed controls exhibited similar initial neophobic responses to novel objects and showed similar habituation in response to repeated exposure. However, when birds were exposed to 15 min of restraint before repeated exposure to the same object, habituation was eliminated in control birds (i.e., they continued to respond with neophobia), whereas chronically stressed birds continued to show habituation as measured by attenuated approach latencies. These results demonstrate that an acute stress response (restraint) has a different impact on neophobia depending upon whether the bird is or is not concurrently exposed to chronic stress. 
    more » « less