Abstract The flux of carbon through the labile dissolved organic matter (DOM) pool supports marine microbial communities and represents the fate of approximately half of marine net primary production (NPP). However, the behavior of individual chemical structures that make up labile DOM remain largely unknown. We performed 12 uptake kinetics and two uptake competition experiments on the abundant betaine osmolytes glycine betaine (GBT) and homarine. Combining uptake kinetics with dissolved metabolite measurements, we quantified fluxes through the DOM pool. Fluxes were correlated with particulate concentrations and ranged from 0.53 to 41 and 0.003 to 0.54 nmol L−1 d−1for GBT and homarine, respectively, equivalent to up to 1.2% of NPP. Turnover times of dissolved GBT and homarine ranged from 1 to 57 d. Betaines and sulfoniums such as dimethylsulfoniopropionate competitively inhibited homarine uptake. Our results quantify GBT and homarine cycling and suggest an important role for uptake competition in regulating dissolved metabolite concentrations and fluxes.
more »
« less
Dissolved Organic Matter in the Global Ocean: A Primer
Marine dissolved organic matter (DOM) holds ~660 billion metric tons of carbon, making it one of Earth’s major carbon reservoirs that is exchangeable with the atmosphere on annual to millennial time scales. The global ocean scale dynamics of the pool have become better illuminated over the past few decades, and those are very briefly described here. What is still far from understood is the dynamical control on this pool at the molecular level; in the case of this Special Issue, the role of microgels is poorly known. This manuscript provides the global context of a large pool of marine DOM upon which those missing insights can be built.
more »
« less
- Award ID(s):
- 2023500
- PAR ID:
- 10293016
- Date Published:
- Journal Name:
- Gels
- Volume:
- 7
- Issue:
- 3
- ISSN:
- 2310-2861
- Page Range / eLocation ID:
- 128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Surface ocean marine dissolved organic matter (DOM) serves as an important reservoir of carbon (C), nitrogen (N), and phosphorus (P) in the global ocean, and is produced and consumed by both autotrophic and heterotrophic communities. While prior work has described distributions of dissolved organic carbon (DOC) and nitrogen (DON) concentrations, our understanding of DOC:DON:DOP stoichiometry in the global surface ocean has been limited by the availability of DOP concentration measurements. Here, we estimate mean surface ocean bulk and semi‐labile DOC:DON:DOP stoichiometry in biogeochemically and geographically defined regions using newly available marine DOM concentration databases. Global mean surface ocean bulk (C:N:P = 387:26:1) and semi‐labile (C:N:P = 179:20:1) DOM stoichiometries are higher than Redfield stoichiometry, with semi‐labile DOM stoichiometry similar to that of global mean surface ocean particulate organic matter (C:N:P = 160:21:1) reported in a recent compilation. DOM stoichiometry varies across ocean basins, ranging from 251:17:1 to 638:43:1 for bulk and 83:15:1 to 414:49:1 for semi‐labile DOM C:N:P, respectively. Surface ocean DOP concentration exhibits larger relative changes than DOC and DON, driving surface ocean gradients in DOC:DON:DOP stoichiometry. Inferred autotrophic consumption of DOP helps explain intra‐ and inter‐basin patterns of marine DOM C:N:P stoichiometry, with regional patterns of water column denitrification and iron supply influencing the biogeochemical conditions favoring DOP use as an organic nutrient. Specifically, surface ocean marine DOM exhibits increasingly P‐depleted stoichiometries from east to west in the Pacific and from south to north in the Atlantic, consistent with patterns of increasing P stress and alleviated iron stress.more » « less
-
Abstract Picocyanobacteria make up half of the ocean’s primary production, and they are subjected to frequent viral infection. Viral lysis of picocyanobacteria is a major driving force converting biologically fixed carbon into dissolved organic carbon (DOC). Viral-induced dissolved organic matter (vDOM) released from picocyanobacteria provides complex organic matter to bacterioplankton in the marine ecosystem. In order to understand how picocyanobacterial vDOM are transformed by bacteria and the impact of this process on bacterial community structure, viral lysate of picocyanobacteria was incubated with coastal seawater for 90 days. The transformation of vDOM was analyzed by ultrahigh-resolution mass spectrometry and the shift of bacterial populations analyzed using high-throughput sequencing technology. Addition of picocyanobacterial vDOM introduced abundant nitrogen components into the coastal water, which were largely degraded during the 90 days’ incubation period. However, some DOM signatures were accumulated and the total assigned formulae number increased over time. In contrast to the control (no addition of vDOM), bacterial community enriched with vDOM changed markedly with increased biodiversity indices. The network analysis showed that key bacterial species formed complex relationship with vDOM components, suggesting the potential correspondence between bacterial populations and DOM molecules. We demonstrate that coastal bacterioplankton are able to quickly utilize and transform lysis products of picocyanobacteria, meanwhile, bacterial community varies with changing chemodiverisity of DOM. vDOM released from picocyanobacteria generated a complex labile DOM pool, which was converted to a rather stable DOM pool after microbial processing in the time frame of days to weeks.more » « less
-
Francois Morel (Ed.)Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically “sulfurized” organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to –10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOM_SPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOM_SPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOM_SPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOS_SPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry.more » « less
-
We describe considerations and strategies for developing a nuclear magnetic resonance (NMR) sample preparation method to extract low molecular weight metabolites from high‐salt spent media in a model coculture system of phytoplankton and marine bacteria. Phytoplankton perform half the carbon fixation and oxygen generation on Earth. A substantial fraction of fixed carbon becomes part of a metabolite pool of small molecules known as dissolved organic matter (DOM), which are taken up by marine bacteria proximate to phytoplankton. There is an urgent need to elucidate these metabolic exchanges due to widespread anthropogenic transformations on the chemical, phenotypic, and species composition of seawater. These changes are increasing water temperature and the amount of CO2absorbed by the ocean at energetic costs to marine microorganisms. Little is known about the metabolite‐mediated, structured interactions occurring between phytoplankton and associated marine bacteria, in part because of challenges in studying high‐salt solutions on various analytical platforms. NMR analysis is problematic due to the high‐salt content of both natural seawater and culture media for marine microbes. High‐salt concentration degrades the performance of the radio frequency coil, reduces the efficiency of some pulse sequences, limits signal‐to‐noise, and prolongs experimental time. The method described herein can reproducibly extract low molecular weight DOM from small‐volume, high‐salt cultures. It is a promising tool for elucidating metabolic flux between marine microorganisms and facilitates genetic screens of mutant microorganisms.more » « less
An official website of the United States government

