Abstract The availability of the micronutrient iron is important in regulating phytoplankton growth across much of the world’s oceans, particularly in the high-nutrient, low-chlorophyll regions. Compared to known mechanisms of iron acquisition and conservation in autotrophic protists (e.g. diatoms), those of dinoflagellates remain unclear, despite their frequent presence in offshore iron-limited waters. Here, we investigate the strategies of an ecologically important mixotrophic dinoflagellate to coping with low iron conditions. Coupled gene expression and physiological responses as a function of iron availability were examined in oceanic and coastal strains of the dinoflagellate Karlodinium. Under iron-replete conditions, grazing was only detected in coastal variants, resulting in faster growth rates compared to when grown autotrophically. Under iron-limited conditions, all isolates exhibited slower growth rates, reduced photosynthetic efficiencies, and lower cellular iron quotas than in iron-replete conditions. However, oceanic isolates exhibited higher relative growth rates compared to coastal isolates under similar low iron concentrations, suggesting they are better adapted to coping under iron limitation. Yet the oceanic isolates did not exhibit the ability to appreciably reduce cell volume or increase iron-use efficiencies compared to the coastal isolates to cope with iron limitation, as often observed in oceanic diatoms. Rather, molecular pathway analysis and corresponding gene expression patterns suggest that oceanic Karlodinium utilizes a high-affinity iron uptake system when iron is low. Our findings reveal cellular mechanisms by which dinoflagellates have adapted to low iron conditions, further shedding light on how they potentially survive in variable iron regions of the world’s oceans.
more »
« less
Teamwork in the viscous oceanic microscale
Nutrient acquisition is crucial for oceanic microbes, and competitive solutions to solve this challenge have evolved among a range of unicellular protists. However, solitary solutions are not the only approach found in natural populations. A diverse array of oceanic protists form temporary or even long-lasting attachments to other protists and marine aggregates. Do these planktonic consortia provide benefits to their members? Here, we use empirical and modeling approaches to evaluate whether the relationship between a large centric diatom, Coscinodiscus wailesii , and a ciliate epibiont, Pseudovorticella coscinodisci , provides nutrient flux benefits to the host diatom. We find that fluid flows generated by ciliary beating can increase nutrient flux to a diatom cell surface four to 10 times that of a still cell without ciliate epibionts. This cosmopolitan species of diatom does not form consortia in all environments but frequently joins such consortia in nutrient-depleted waters. Our results demonstrate that symbiotic consortia provide a cooperative alternative of comparable or greater magnitude to sinking for enhancement of nutrient acquisition in challenging environments.
more »
« less
- PAR ID:
- 10293216
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 29
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2018193118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Huber, Julie A. (Ed.)ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth, whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions.more » « less
-
Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum . We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.more » « less
-
Abstract Mixotrophic protists combine photosynthesis and phagotrophy to obtain energy and nutrients. Because mixotrophs can act as either primary producers or consumers, they have a complex role in marine food webs and biogeochemical cycles. Many mixotrophs are also phenotypically plastic and can adjust their metabolic investments in response to resource availability. Thus, a single species's ecological role may vary with environmental conditions. Here, we quantified how light and food availability impacted the growth rates, energy acquisition rates, and metabolic investment strategies of eight strains of the mixotrophic chrysophyte,Ochromonas. All eightOchromonasstrains photoacclimated by decreasing chlorophyll content as light intensity increased. Some strains were obligate phototrophs that required light for growth, while other strains showed stronger metabolic responses to prey availability. When prey availability was high, all eight strains exhibited accelerated growth rates and decreased their investments in both photosynthesis and phagotrophy. Photosynthesis and phagotrophy generally produced additive benefits: In low‐prey environments,Ochromonasgrowth rates increased to maximum, light‐saturated rates with increasing light but increased further with the addition of abundant bacterial prey. The additive benefits observed between photosynthesis and phagotrophy inOchromonassuggest that the two metabolic modes provide nonsubstitutable resources, which may explain why a tradeoff between phagotrophic and phototrophic investments emerged in some but not all strains.more » « less
-
Abstract Choanoflagellates, unicellular eukaryotes that can form multicellular colonies by cell division and that share a common ancestor with animals, are used as a model system to study functional consequences of being unicellular versus colonial. This review examines performance differences between unicellular and multicellular choanoflagellates in swimming, feeding, and avoiding predation, to provide insights about possible selective advantages of being multicellular for the protozoan ancestors of animals. Each choanoflagellate cell propels water by beating a single flagellum and captures bacterial prey on a collar of microvilli around the flagellum. Formation of multicellular colonies does not improve the swimming performance, but the flux of prey‐bearing water to the collars of some of the cells in colonies of certain configurations can be greater than for single cells. Colony geometry appears to affect whether cells in colonies catch more prey per cell per time than do unicellular choanoflagellates. Although multicellular choanoflagellates show chemokinetic behavior in response to oxygen, only the unicellular dispersal stage (fast swimmers without collars) use pH signals to aggregate in locations where bacterial prey might be abundant. Colonies produce larger hydrodynamic signals than do single cells, and raptorial protozoan predators capture colonies while ignoring single cells. In contrast, ciliate predators entrain both single cells and colonies in their feeding currents, but reject larger colonies, whereas passive heliozoan predators show no preference. Thus, the ability of choanoflagellate cells to differentiate into different morphotypes, including multicellular forms, in response to variable aquatic environments might have provided a selective advantage to the ancestors of animals.more » « less
An official website of the United States government

