This work proposes a modular learning framework (MIRA) for rehabilitation robots based on a new deep recurrent neural network (RNN) that achieves adaptive multi-joint motion imitation. The RNN is fed with the fundamental frequencies as well as the ranges of the joint trajectories, in order to predict the future joint trajectories of the robot. The proposed framework also uses a Segment Online Dynamic Time Warping (SODTW) algorithm to quantify the closeness between the robot and patient motion. The SODTW cost decides the amount of modification needed in the inputs to our deep RNN network, which in turn adapts the robot movements. By keeping the prediction mechanism (RNN) and adaptation mechanism (SODTW) separate, the framework achieves modularity, flexibility, and scalability. We tried both Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) RNN architectures within our proposed framework. Experiments involved a group of 15 human subjects performing a range of motion tasks in conjunction with our social robot, Zeno. Comparative analysis of the results demonstrated the superior performance of the LSTM RNN across multiple task variations, highlighting its enhanced capability for adaptive motion imitation.
more »
« less
Online Dynamic Time Warping Algorithm for Human-Robot Imitation
In this paper, we propose a novel online algorithm for motion similarity measurements during human-robot interaction (HRI). Specifically, we formulate a Segment-based Online Dynamic Time Warping (SODTW) algorithm that can be used for understanding of repeated and cyclic human motions, in the context of rehabilitation or social interaction. The algorithm can estimate both the human-robot motion similarity and the time delay to initiate motion and combine these values as a metric to adaptively select appropriate robot imitation repertoires. We validated the algorithm offline by post-processing experimental data collected from a cohort of 55 subjects during imitation episodes with our social robot Zeno. Furthermore, we implemented the algorithm online on Zeno and collected further experimental results with 13 human subjects. These results show that the algorithm can reveal important features of human movement including the quality of motion and human reaction time to robot stimuli. Moreover, the robot can adapt to appropriate human motion speeds based on similarity measurements calculated using this algorithm, enabling future adaptive rehabilitation interventions for conditions such as Autism Spectrum Disorders (ASD).
more »
« less
- Award ID(s):
- 1838808
- PAR ID:
- 10293410
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- ISSN:
- 1049-3492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Human motion prediction is non-trivial in modern industrial settings. Accurate prediction of human motion can not only improve efficiency in human-robot collaboration, but also enhance human safety in close proximity to robots. Although many prediction models have been proposed with various parameterization and identification approaches, some fundamental questions remain unclear: what is the necessary parameterization of a prediction model? Is online adaptation of models necessary? Can a prediction model help improve safety and efficiency during human-robot collaboration? These unaddressed questions result from the difficulty of quantitatively evaluating different prediction models in a closed-loop fashion in real human-robot interaction. This paper develops a method to evaluate the closed-loop performance of different prediction models. In particular, we compare models with different parameterizations and models with or without online parameter adaptation. Extensive experiments were conducted on a human-robot collaboration platform. The experimental results demonstrate that human motion prediction significantly enhance the collaboration efficiency and human safety. Adaptable prediction models that are parameterized by neural networks achieve better performance.more » « less
-
In early motor interventions from clinical rehabilitation to physical activity encouragement, one major challenge is maintaining child engagement and motivation. Robots show unique promise for addressing this challenge, but providing robots with new types of autonomous functionality is vital for promoting robot integration and usefulness in the clinic and home spaces. To provide needed autonomy capabilities for GoBot, our assistive robot for child–robot motion interventions, we propose a behavior tree framework. Within our framework, we build two trees: one manually designed based on expert knowledge of the child–robot interaction domain, and a second automatically synthesized and requiring minimal human input and time to construct. We tested each behavior tree withN= 11 children who interacted with GoBot during two behavior tree phases and a stationary-robot control phase. Our results show that both behavior tree phases tended to yield more child motion and significantly higher parent perception of child engagement, compared to the control phase. We showed that GoBot, equipped with our framework, has the potential to encourage movement and interaction in children and that a synthesized tree can be competitive with a manually designed tree. The products of this work can benefit researchers of behavior trees and child–robot interaction.more » « less
-
null (Ed.)Abstract This study presents robot-based rehabilitation and its assessment. Robotic devices have significantly been useful to help therapists do the training procedure consistently. However, as robotic devices interface with humans, quantifying the interaction and its intended outcomes is still a research challenge. In this study, human–robot interaction during rehabilitation is assessed based on measurable interaction forces and human physiological response data, and correlations are established to plan the intervention and effective limb trajectories within the intended rehabilitation and interaction forces. In this study, the Universal Robot 5 (UR5) is used to guide and support the arm of a subject over a predefined trajectory while recording muscle activities through surface electromyography (sEMG) signals using the Trigno wireless DELSYS devices. The interaction force is measured through the force sensor mounted on the robot end-effector. The force signals and the human physiological data are analyzed and classified to infer the related progress. Feature reduction and selection techniques are used to identify redundant inputs and outputs.more » « less
-
Teleoperation—i.e., controlling a robot with human motion—proves promising in enabling a humanoid robot to move as dynamically as a human. But how to map human motion to a humanoid robot matters because a human and a humanoid robot rarely have identical topologies and dimensions. This work presents an experimental study that utilizes reaction tests to compare joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm that possesses human-level dynamic motion capabilities. The experimental results suggest that the robot achieved similar and, in some cases, human-level dynamic performances with both mappings for the six participating human subjects. All subjects became proficient at teleoperating the robot with both mappings after practice, despite that the subjects and the robot differed in size and link length ratio and that the teleoperation required the subjects to move unintuitively. Yet, most subjects developed their teleoperation proficiencies more quickly with task space mapping than with joint space mapping after similar amounts of practice. This study also indicates the potential values of three-dimensional task space mapping, a teleoperation training simulator, and force feedback to the human pilot for intuitive and dynamic teleoperation of a humanoid robot’s arms.more » « less
An official website of the United States government

