skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parametric Control of Melting Gel Morphology and Chemistry via Electrospray Deposition
Melting gels are a class of hybrid organic-inorganic silica based gels prepared via the sol-gel process that are solid below their glass transition temperatures, near room temperature, but show thermoplastic behavior when heated. While this phase change can be repeated multiple times, heating the gel past its consolidation temperatures, typically above 130 oC initiates an irreversible reaction that produces highly crosslinked glassy organic-inorganic materials via hydrolysis and poly-condensation. This ability makes melting gels uniquely compatible with processing techniques inaccessible to other sol-gels. By properly tuning their properties, it should be possible to create protective coatings for electronics and anti-corrosive coatings for metals that are highly hydrophobic and insulating. However, melting gel consolidation reactions are highly dependent on charge interactions, raising the question of how these materials will respond to a processing technique, like electrospray deposition (ESD), which is dependent on charge delivery. In this study, we focus on the role that substrate temperature and charge polarity play on film morphology, consolidation chemistry, and surface properties. Optical images, film thickness measurements, nanoindentation, and FTIR were used to characterize the sprayed melting gel with the goal of developing a robust processing space for producing highly cross linked, hydrophobic, dielectric coatings.  more » « less
Award ID(s):
1911509
PAR ID:
10293459
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ASME 2021 16th International Manufacturing Science and Engineering Conference
Volume:
2
Issue:
1
Page Range / eLocation ID:
1-5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rare‐earth disilicates are a focus of study for use as environmental barrier coatings in gas‐turbine engines. These coatings require thermomechanical and thermochemical stability at elevated temperatures and properties can be tailored through the use of multicomponent rare‐earth disilicates. Producing rare‐earth disilicates via sol–gel is documented in literature, but there are differing procedures with varying phase purities. This work establishes trends that dictate the effects of water content, pH, and heat treatment conditions that determine the final phase purity of Yb, Er, Lu, Sc, and Y disilicate powders made via sol–gel. The phase(s) of the powders were identified and quantified using X‐ray diffraction (XRD) to extract weight fractions. In situ XRD during heating from room temperature to 1200°C was used to observe the crystallization and phase evolution of the sol–gel‐based powders, allowing for the identification of a rarely reported low temperature triclinic phase in ytterbium‐, erbium‐, and lutetium‐based disilicate sol–gels that forms prior to transformation into a monoclinic phase. Ex situ XRD allowed for the phase identification of sol–gels processed at 1400°C. These experiments demonstrated that phase‐pure disilicates could be formed under conditions with no intentional water additions, a target pH of 2, and long heat treatment times at high temperatures (e.g., 1400°C). These conditions remain valid for not only single‐cation rare‐earth disilicates of Yb, Er, Lu, Sc, and Y but also a multicomponent disilicate containing equimolar concentrations of all of these cations. 
    more » « less
  2. Coupling of organic and inorganic chemistry presents a new degree of freedom in nano-engineering of thermo-mechanical properties of cement-based materials. Despite these vast technological benefits, molecular scale cross-linking of calcium-silicate-hydrate (C-S-H) gel with organic molecules still presents a significant challenge. Herein, we report experimental results on sol-gel synthesis, structure and morphology of nanocrystalline C-S-H cross-linked with dipodal organosilanes. These novel organic-inorganic gels have layered turbostratic molecular structure with similarities to C-S-H precipitating in hydrating cement paste. The organic molecules' chain length controls the interlayer spacing, which shows little to no shrinkage upon dehydration up to 105 °C. However, the structure gets distorted in the basal crystallite plane, in which dimer and trimer Si-polyhedra structures condense on a 2D hexagonal Ca-polyhedra layer. Cross-linked C-S-H gels display plate-like morphology with tendency toward stacking into agglomerates at the larger scale. If successfully realized in cement environment, e.g. high concentration seed, such novel organic-inorganic C-S-H gels could potentially provide cement-based matrices with unique properties unmatched by classical inorganic systems. 
    more » « less
  3. Soft materials that change form or function in response to environmental or user-applied stimuli have a wide range of biomedical applications ( 1 ). Gels can form in water from weakly interacting molecules but can return to the state of a flowing liquid suspension, known as a sol, upon changes in the concentration of the molecules or the applied temperature. This behavior is known as a reentrant phase transition. A gel-to-sol phase transition typically arises from a reduction in concentration, meaning that a gel becomes a sol upon dilution and a sol becomes a gel with increased concentration. On page 213 of this issue, Su et al. ( 2 ) demonstrate a system that exhibits a sol-to-gel transition when diluted, inverting the common behavior of gels. Their observations offer insight into systems that undergo reentrant phase transitions in biology. 
    more » « less
  4. Herein, we investigate supramolecular gelation behavior of a dendronized triphenylamine bis-urea macrocycle (1) in toluene in the presence and absence of sulfoxide chain stoppers. Macrocycle 1 assembles in the sol phase through intermolecular hy-drogen bonding interactions, spontaneously transitioning into a gel state when left undisturbed at room temperature. In tolu-ene, 1 displays a critical gelation concentration of 0.066 wt%, classifying it as a super-gelator. Furthermore, it exhibits a thermoreversible gel-sol phase transition as well as thixotropic behavior. Temperature-dependent 1H NMR spectroscopy is employed to probe the sol phase assembly of 1 with the size variations at different temperatures assessed by 2D DOSY. Rheological experiments at 10 °C were used to measure gelation response to mechanical stimuli. An amplitude sweep test highlights a linear viscoelastic region. Additionally, the self-healing behavior of gel 1 was verified through a series of strain cycles, where it showed complete recovery. Addition of chain stoppers 10% versus 1 of dimethyl sulfoxide (DMSO) and diphenyl sulfoxide (DPS) lead to weaker gels with smaller differences between the storage and the loss moduli. Rheological analysis revealed slower/partial recovery for the gel containing chain stoppers. Gels assembled from macrocyclic building blocks may retain homogeneous binding cavity and channels offering novel functional properties. 
    more » « less
  5. Abstract The sol-gel method has shown immense potential in materials science and nanotechnology. One of the cornerstone applications of the sol-gel technique includes the fabrication of inorganic glasses and glass-ceramics at relatively low temperatures as an alternative to conventional high-temperature melt-quench techniques. In recent times, glass fabrication with the sol-gel method has extended to additive manufacturing (AM), also referred to as 3D printing. Current sol-gel, glass AM uses solution-based gel compositions to produce three-dimensional glasses through layer-by-layer deposition and/or using photocurable polymer resins. Owing to its significant advantages of being able to fabricate glass components with arbitrary and complex geometry, AM presents a tantalizing opportunity to fabricate functionalized glass materials, increasing the technique’s popularity over the past decade. In this review and perspective, recent progress in combining sol-gel synthesis and additive manufacturing technologies used for obtaining inorganic glasses are discussed, specifically highlighting the research carried out in North America, and a prospectus of the field and emerging areas of interest and need is presented. Graphical Abstract 
    more » « less