skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A quantitative yeast aging proteomics analysis reveals novel aging regulators
Award ID(s):
1761839 1720215
PAR ID:
10293606
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
GeroScience
ISSN:
2509-2715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species. 
    more » « less
  2. Abstract Over 80% of older adults want to live independently in their own homes and communities, maintaining quality of life, autonomy, and dignity as they age. We are using community engaged research methods to aid in developing in-home cost-conscious remote sensing technologies to support older adults age in place. To understand their needs, we engaged older adults in discussions on home-based sensing technologies. We used visuals and demonstrations to facilitate discussions, showing participants our sensor prototypes and a vignette describing the challenges an older adult and the family face managing a chronic condition. Participants voiced their interest in monitoring for select health conditions and situations when either they or the person(s) they care for are home alone. Discussants raised concerns about personal security/privacy, loss of independence, ethics of data collection and sharing, and being overwhelmed by collected data. Discussions have provided valuable feedback to help us develop a sensor system that is flexible enough to accommodate individuals in different life stages and comfort levels, with different home environments, levels of expendable income, and support structures. As a result, we have developed a system that uses nonvisual, non-wearable sensing that measures respiration and heart rates, and indoor location tracking to monitor the health and wellbeing of users. During this session, we will provide detailed results from our community discussions, and discuss the continuing role for community engagement as we move forward with sensor development and testing. 
    more » « less
  3. null (Ed.)
    This paper highlights current technological limitations and offers recommendations for scientists and engineers when designing devices to support aging in place. Existing technology for older adults to support independent living is examined as well as the implications of contextual factors, namely, location, on how people live and age based on the location in which they reside. This is the first review to investigate how challenges of aging change relative to location of residence and, subsequently, how such variation may inform technological solutions. To date, few devices consider the environment in which older individuals age. Places examined include aging: at home; assisted living facilities; nursing homes; and family housing. Challenges found in common across these locations were financial strain and isolation. In addition, each setting was found to have its own unique hurdles. Understanding these barriers is essential to developing technology that enables older adults to successfully age in place. 
    more » « less